首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设矩阵 求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
admin
2021-02-25
45
问题
设矩阵
求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为3阶单位矩阵.
选项
答案
解法1:由于|A|=7≠0,所以矩阵A的任一特征值A≠0.设η是A的属于λ的一个特征向量,即Aη=λη,故η是A
-1
的属于1/λ的特征向量.又A
*
=|A|A
-1
,故η是A
*
的属于|A|/λ的特征向量.由B=P
-1
A
*
P,有PBP
-1
=A
*
从而 [*] 即[*],所以P
-1
η,是B的属于特征值|A|/λ的特征向量. 由 [*] 知A的特征值为λ
1
=λ
2
=1,λ
3
=7.通过计算可知,A的属于特征值λ
1
=λ
2
=1的线性无关的特征向量可取为 [*] 属于λ
3
=7的一个特征向量可取为 [*] 又 [*] 于是B的属于特征值|A|/λ
1,2
=7的特征向量可取为 [*] 矩阵B的属于特征值|A|/λ
3
=1的特征向量可取为 [*] 故矩阵B+2E的特征值为3,9,9.属于特征值9的特征向量为 [*] 其中K
1
,K
2
是不全为零的常数;属于特征值3的特征向量为 [*] 其中K
3
为不等于零的常数. 解法2:由条件得 [*] 所以 [*] 由|λE-(B+2E)|=(λ-9)
2
(λ-3),知B+2E的特征值为3,9,9.属于特征值9的特征向量为 [*] 其中K
1
,K
2
是不全为零的常数; 属于特征值3的特征向量为 [*] 其中K
3
为不等于零的常数.
解析
本题主要考查矩阵的特征值及特征向量的计算,并由A的特征值、特征向量计算与A有关的某些矩阵的特征值及特征向量.本题主要有两种解法,一是先讨论矩阵B与A的特征值、特征向量之间的关系,经计算A的特征值、特征向量而得到B+2E的特征值、特征向量;二是由A求A
*
,再求B及B+2E,从而算出B+2E的特征值、特征向量.后一方法由于要经过多次数字计算,中间稍有错误便前功尽弃.
转载请注明原文地址:https://www.kaotiyun.com/show/gp84777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
计算不定积分
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求矩阵A.
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求A的特征值与特征向量;
已知f’(sin2x)=cos2x+tan2x,则f(x)等于()
随机试题
创造思维
婴幼儿急性上感的临床特点
国产1号避孕药的成分
女,27岁,产后半月,右乳房胀痛伴高热38.5℃,体检:右乳房外上象限明显红肿,无触痛,无波动感,诊断为急性乳腺炎。在诊断方面,最重要的是要除外
某女,43岁,因吵架出现性情急躁易怒,口苦而干,头痛,耳赤,大便秘结,舌红,苔黄,脉弦数。其辨证为()
选择就位道的一般规律错误的是
解放思想与实事求是的关系表现为()。
根据下段文字.回答下列问题。随着我国经济社会的快速发展,工业和城市“三废”的大量排放.以及农业生产大量使用化肥、农药、杀虫剂等化学物质,农用耕地大量被污染,加上大量位于城市中心区和城郊地区的工业企业搬迁遗留的污染场地,使得我国土地污染日趋严重。土壤受污染
要剥除的附着在户口本上的利益有哪些?用不超过250个文字进行说明。在现有的利益格局中,欲消除户籍改革的阻力,必须做好哪些工作?
某中学高三(2)班排队,全班一共有56人,排成一条长队。从前面数,张明是第32人,从后面数,李红是第47人。请问张明和李红中间一共有多少同学?()
最新回复
(
0
)