首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为( ).
admin
2017-11-09
96
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)
T
,则方程组A
*
χ=0基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
或α
1
,α
2
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
由Aχ=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
χ=0的基础解系中含有3个解向量.
又A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
χ=0的解.
因为(1,0,2,0)
T
是Aχ=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除A、B、D选项.
事实上,由α
1
+2α
3
=0,得α
1
=0α
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
χ=0的一个基础解系.
故应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/f6X4777K
0
考研数学三
相关试题推荐
证明:
若正项级数收敛.
确定常数a,b,c,使得=c.
设常数0<a<1,求
设A是n阶实矩阵,将A的第i列与第j列对换,然后再将第i行和第j行对换,得到B,则A,B有()
设=1,a为常数,则=________.
在区间[0,a]上|f(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(A)|≤Ma.
设函数f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充分条件是()
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值.
随机试题
以下严禁装药爆破的情况是()。
某电脑公司为了赢得顾客的信赖,扩大市场份额,采取了一系列措施,例如加强产品质量宣传,进行市场调查,收集顾客反馈信息,增加售后服务网点,通过质量管理体系认证。以下是顾客满意的基本特性的是_________。
研究耐盐碱的海水稻.有助于突破我国18亿亩有限的耕地资源约束,并在很大程度上缓解人类水资源、可耕地和粮食三大危机。下列关于海水稻的说法,错误的是()。
关于马克思主义法学对法的本质的界定,下列说法正确的是
各地中国共产党早期组织成立以后,主要进行的工作有()
Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.Itisnoteasytoexplainwhyoneperson
Youwillhearfiveshortrecordings.Fivespeakersaretalkingaboutdelegatingatwork.Foreachrecording,decidewhatadvice
—"TheGreenswatchTVallthetime."—"______dotheBrowns."
ResearchersfromtheUniversityofPlymouthinEnglandwonderedwhethermoodmightaffectthewaykidslearn.Tofindout,they
I’msorrytosaythatyouhavemadeno(improve)______onthedesignatall.
最新回复
(
0
)