首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2022-01-06
67
问题
设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(Ⅰ)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 显然α,β都不是零向量且A=αβ
T
; 反之,若A=αβ
T
,其中α,β都是n维非零列向量,则r(A)=r(αβ
T
)≤r(a)=1,又因为α,β为非零向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβ
T
显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
-Kλ)X=0,注意到X≠0,所以矩阵A的特征值为λ=0或λ=k. 因为λ
1
+λ
2
+…λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…=λ
n
=0,由r(OE-A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/esf4777K
0
考研数学二
相关试题推荐
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=__________。
设A是n阶可逆矩阵,B是把A的第2列的3倍加到第4列上得到的矩阵,则
A、 B、 C、 D、 A
已知实二二次型f=(a11x1+a12x2+a13x3)2+(a21x1+a22x2+a23x3)2+(a31x1+a32x2+a33x3)2正定,矩阵A=(aij)3×3,则()
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A为n阶矩阵,下列结论正确的是().
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;(A一B恒可逆。上述命题中,正确的个数为()
设n阶矩阵A与对角矩阵合同,则A是().
两曲线与y=ax2+b在点处相切,则()
随机试题
A、secondB、ThursdayC、presidentD、hesitateA
下列哪项是宫颈原位癌
气虚发热证的病机为阴虚发热证的病机为
消化液中最重要的是
某企业生产某一产品,年销售收入为100万元,变动成本总额为60万元,固定成本总额为16万元,则该产品的边际贡献率为()。
编制预计资产负债表时,可以直接从现金预算中直接获得的数据是()。
《游峨眉山记》的作者是(),他的诗与尤袤、杨万里、陆游齐名,号称南宋四大家。
下列报告文学中()是散文作家、诗人、小说家魏巍的作品。
从埃及石像上的刻字到泰国白庙的洗手间,中国游客的素质一直是个十分敏感且每每在网络上引起广泛关注的话题。随着舆论的_______,国家旅游局不得不出台游客“黑名单”,以杜绝游客的不文明行为,久而久之,似乎每一个中国游客也都默认了“素质低”这_______。填
Everyhumanbeing,【C1】______whatheisdoing,givesoffbodyheat.Theusualproblemis【C2】______disposeofit.Butthedesigner
最新回复
(
0
)