首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证: F(x)=在区间(0,﹢∞)上也严格单调增加.
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证: F(x)=在区间(0,﹢∞)上也严格单调增加.
admin
2018-12-21
107
问题
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:
F(x)=
在区间(0,﹢∞)上也严格单调增加.
选项
答案
对第1个积分作变量代换,令[*]=u,t=ux.则 [*] 当0
1,于是当1≤u﹤[*]时,有[*]-f(u)﹥0;当x﹥1时,0<[*]<1,于是 当[*]
’(x)﹥0(当x﹥0 且 x≠1).此外易知F
’
(1)=0.所以当0﹤x﹤﹢∞时,F(x)严格单调增加.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/e8j4777K
0
考研数学二
相关试题推荐
(2008年)设A=,则在实数域上与A合同的矩阵为【】
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=y(χ)为曲边的曲边梯形面积记为S2,并设2S1-S
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:(1)I1=,其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2)I2=(eλx一e一λy)dσ,常数λ>0.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
汽车整车企业应配备与其所承修车型相适应的()等工量具。
交一直一交变频调速系统有何优缺点?应用前景如何?
器官移植患者急性排斥反应的主要原因是
乳房Paget病是指
锅炉事故的主要事故类型有水击事故、___________锅炉结渣等。
对于分离交易的可转换公司债券,发行后累计公司债券余额不得高于期末净资产额的30%。( )
证券发行的最后环节是将证券委托给专门的中介机构。()
1,4,27/4,(),125/16,27/4
HowWeFormFirstImpression1Weallhavefirstimpressionofsomeonewejustmet.Butwhy?Whydoweformanopinionabou
Whenaninventionismade,theinventorhasthreepossiblecoursesofactionopentohim:hecangivetheinventiontotheworld
最新回复
(
0
)