首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2018-02-07
61
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dHk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
给定函数f(x)=ax2+bx+c,其中a,b,c为常数,求:fˊ(x),f(0),fˊ(1/2),fˊ(-b/2a).
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
求f(x)的值域。
求微分方程y’=y(1-x)/x的通解。
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
随机试题
糖尿病肾病合并肺结核宜选用的抗结核药物
电路如图所示,则电流I为()。
建立在社会主义市场经济基础上的产业政策,是政府实行宏观调控的重要手段,既与国家规划相联系,体现规划的(),又能发挥市场机制的作用,保证企业的灵活性,是联结计划与市场两种机制的纽带。
下面不属于索赔费用的是()。
《会计法》行使行政处罚的行政机关是( )。
银行办理个人汽车贷款的内部操作流程包括()。
下列是关于贷款的转让步骤,则正确顺序是()。①挑选出同质的待转让单笔贷款,并将其放在一个资产组合中;②办理贷款转让手续;③对资产组合进行评估;④签署转让协议;⑤双方协商(或投标)确定购买价格;⑥为投资者提供资产组合的详细信息。
传统经验医学正遭遇“不确定性”技术瓶颈,造成医疗资源浪费和医疗效果不尽如人意。相比传统诊疗手段,精准医学具有精准性和便捷性,一方面通过基因测序可以找出疾病相关的突变基因,从而迅速确定对症药物,减少弯路,提高疗效,同时还能够在患者遗传背景的基础上降低药物副作
从1,2,3,……,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除。问最多可取几个数?
Cross-culturalLivingInadaptingtoanewculture,expecttogothroughthreedistinctstages.Iwillgiveyousomeideas
最新回复
(
0
)