首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
admin
2020-10-21
72
问题
求微分方程y"+4y’一5y=(3x一1)e
x
满足初始条件y(0)=0,y’(0)=1的特解.
选项
答案
(1)先求y"+4y’一5y=0的通解. 特征方程为r
2
+4r一5=0,解得r
1
=一5,r
2
=1,所以y"+4y’一5y=0的通解为 Y=C
1
e
-5x
+C
2
e
x
,其中C
1
,C
2
为任意常数. (2)其次求y"+4y’ —5y=(3x—1)e
x
的一个特解. 因为λ=1是特征单根,令其一个特解为y
*x
=x(Ax+B)e
x
,则 (y
*
)’=(2Ax+B+Ax
2
+Bx)e
x
, (y
*
)"=(2A+4Ax+2B+Ax
2
+Bx)e
x
, 将其代入原方程,并消去e
x
,得 2A+6B+12Ax=3x一1, 比较等式两边x的系数,得 [*] 解得[*] (3)写出y"+4y’一5y=(3x—1)e
x
的通解为 [*],其中C
1
,C
2
为任意常数. 则 [*] 由y(0)=0,y’(0)=1,得 [*] 解得C
1
=一[*],C
2
=[*],故所求特解为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/bT84777K
0
考研数学二
相关试题推荐
下列广义积分中发散的是【】
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
已知为某二元函数u(x,y)的全微分,则a等于()
若f(x)在x=0的某邻域内二阶连续可导,且=1,则下列正确的是().
设f(x)二阶可导,且f(0)=0,令g(x)=确定a的取值,使得g(x)为连续函数。
求曲线y=-x2+1上一点P(x0,y0)(其中x0≠0),使过P点作抛物线的切线,此切线与抛物线及两坐标轴所围成的图形面积面积最小。
设f(x)二阶可导,,且f(1)=1,证明:存在ε∈(0,1),使得f"(ε)-2f’(ε)=-2.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
设(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
随机试题
简述道德的历史发展过程。
霍奇金淋巴瘤的肿瘤细胞包括
患者,男,45岁。肝硬化病史5年。目前病情稳定,血氨正常,无腹水。其饮食原则为
下面青霉素过敏反应预防措施中正确的是()
纳税人取得不含税全年一次性奖金收入的当月工资薪金所得,低于税法规定的费用扣除额,应先将不含税全年一次性奖金减去当月工资薪金所得低于税法规定费用扣除额的差额部分后按规定计税。()
使用以前期间的预算或者实际业绩作为基础来编制的预算属于()。
支出转换政策
经济全球化是指在生产不断发展、科技加速进步、社会分工和国际分工不断深化、生产的社会化和国际化程度不断提高的情况下,世界各国、各地区的经济活动越来越超出一国和地区的范围而相互联系、相互依赖的一体化过程。经济全球化的表现包括()
A、 B、 C、 B
Afacialexpressionresultsfromoneormoremotionsorpositionsofthemusclesoftheface.Thesemovements【C1】______theemot
最新回复
(
0
)