首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
admin
2019-08-12
83
问题
齐次线性方程组的系数矩阵A
4×5
=[β
1
,β
2
,β
3
,β
4
,β
5
]经过初等行变换化成阶梯形矩阵为
则 ( )
选项
A、β
1
不能由β
3
,β
4
,β
5
线性表出
B、β
2
不能由β
1
,β
3
,β
5
线性表出
C、β
3
不能由β
1
,β
2
,β
5
线性表出
D、β
4
不能由β
1
,β
2
,β
3
线性表出
答案
D
解析
β
i
能否由其他向量线性表出,只需将β
i
视为非齐次方程的右端自由项(无论它原来在什么位置),有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β
4
不能由β
1
,β
2
,β
3
线性表出.
转载请注明原文地址:https://www.kaotiyun.com/show/aqN4777K
0
考研数学二
相关试题推荐
确定下列函数的定义域,并做出函数图形。
设A是n阶矩阵,证明
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
A=,求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
设3阶矩阵A可逆,且A-1=A*为A的伴随矩阵,求(A*)-1.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R),证明:若f(0)=1,则f(x)≥ef’(0)x.
设则(A*)-1=_____________.
随机试题
突触的传递特征有
商业银行在经营中,由于借款人不能按时还贷而遭受损失的风险是()。
纸质为淡绿色的处方是
下列关于投标人的条件的判断中,正确的是哪些?
(2010年)计算其中Ω为z2=x2+y2,z=1所围成的立体,则正确的解法是()。
在潜在任职人员的能力和条件中,下列()不属于能力素质。
有如下类声明和函数声明classBase{intm;public:intn;protected:intP;};classDerived:publicBase{
GaryMarshallofGrandIslandisexperiencedinteaching.
HadIknowntheresult,I______youtotellme.
FormanypeopleintheU.S.,sportsarenotjustforfun.Theyarealmostareligion.Thousandsofsportsfansbuyexpensivetic
最新回复
(
0
)