首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α,α,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α,α,…,αr线性表示,又可用β1,β2,…,βs线性表示.
admin
2016-10-21
79
问题
设α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
是两个线性无关的n维向量.证明:向量组{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关
存在非零向量r,它既可用α,α,…,α
r
线性表示,又可用β
1
,β
2
,…,β
s
线性表示.
选项
答案
“[*]”因为{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关,所以存在c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
不全为0,使得 c
1
α
1
+c
2
α
2
+…+c
r
α
r
+c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
=0 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
=-(c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
), 则γ≠0(否则由α
1
,α
2
,…,α
r
,和β
1
,β
2
,…,β
s
都线性无关,推出c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
全为0),并且它既可用α
1
,α
2
,…,α
r
表示,又可用β
1
,β
2
,…,β
s
表示. “[*]”设γ≠0,它既可用α
1
,…,α
r
表示,又可用β
1
,…,β
s
表示. 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
s
=t
1
β
1
+t
2
β
2
+…+t
s
β
s
,则c
1
,c
2
,…,c
r
和t
1
,t
2
,…,t
s
都不全为0,而 c
1
α
1
+c
2
α
2
+…+c
r
α
s
-t
1
β
1
-t
2
β
2
-…-t
s
β
s
=0. 根据定义,{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aXt4777K
0
考研数学二
相关试题推荐
一曲线通过点(e2,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该积分曲线.
证明
确定常数a,b,使得ln(1+2x)+ax/(1+bx)=x+x2+σ(x2).
设0<a1<π,an+1=sinan(n=1,2,…).证明:存在,并求此极限;
计算二重积分|x2+y2-1|dδ,其中D={(x,y)|0≤x≤1,0≤y≤1}.
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]证明g’(x)是单调增加的。
已知两曲线y=f(x)与y=∫0arctanx在点(0,0)处的切线相同,写出此切线方程,并求极限.
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=1/2x2,求曲线C2的方程.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立.解此关于a,k的方程组可得a=-1,k=1.
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
随机试题
下列各项中属于汉藏语系的语言有()
厥证的主症是
早早孕时,HCG试验一般在受孕后几天可检出阳性结果
下列关于舌诊原理,叙述错误的是
属于路面基层粒料类级配型的是()。
英国一家贸易公司与广州某进出口公司订立合同,购买大米2500公吨。合同规定,2004年3月28日前开出信用证,4月5日前装船。3月25日买方开来信用证,有效期至4月26日。由于卖方按期装船发生困难,故电请买方将装船期延至4月17日并将信用证有效期延长至5月
阅读短文,根据短文内容,回答下列问题。每个人在社会上生活,每天都要与人交往,经常会遇到些别人对自己无礼、无理的事,碰到些别人需要自己理解、帮助、支持的事。在这些事情面前,是宽宏大量,与人为善,还是小肚鸡肠,与人为恶,不仅是一个人道德品质修养高低的
(2015年第35题)结合材料回答问题:让大猫小猫都有路走计划经济时期全靠国家管理市场,市场边角被忽略,很多小商品没人去生产,有些新的市场需求也没人去注意。非公有制经济的特点是只要市场有需求,它就会去满足要保
Readthearticlebelowaboutatechnologycompanyandthequestionsontheoppositepage.CriticalPath
AstudyinvestigatingdetrimentalinternetusebyadolescentshasrecentlybeenconductedinFinland.Adolescents’netuseisa
最新回复
(
0
)