首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为 求A;
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为 求A;
admin
2013-12-27
75
问题
(2010年试题,21)设二次型f(x
1
,x
2
,x
3
)=xTAx在正交变换x=Qy下的标准型为y
1
2
+y
2
2
,且Q的第三列为
求A;
选项
答案
因为二次型f在正交变换x=Qy下的标准型为y
1
2
+y
2
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=0.又Q的第三列为[*]故矩阵A对应于特征值λ
3
=0的特征向量为α
3
=[*]又矩阵A是实对称矩阵,故对应于不同特征值的特征向量是相互正交的,设属于特征值λ
1
=λ
2
=1的特征向量分别为α
1
,α
2
,则[*]可取α
1
=(0,1,0)
T
,α
2
=(一1,0,1)
T
则α
1
,α
2
与α
3
是正交的.又α
1
,α
2
是相互正交的,故只需单位化得[*][*]故而矩阵[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/aR54777K
0
考研数学一
相关试题推荐
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
设A为m×n矩阵,证明:方程Ax=Em有解的充分必要条件是R(A)=m.
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
已知的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式.
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1-a的置信区间为().
随机试题
附着于细胞膜表面的C5b~8复合物一般可与多少个C9分子结合形成MAC
如果被害人或证人拒绝人身检查,而侦查人员又认为有必要检查时,可以强制检查。()
随机误差呈现正态分布。()
结论比较可靠,但由于个别事实繁杂,难以一一考察,这是归纳法哪一具体方式的特点?()
低渗性脱水患者的表现,以下不正确的是
参与腭咽闭合的主要肌肉是
关于招标师职业资格考试,下列说法正确的有()。
投资项目资金筹措不正确的做法是()。
多洛雷斯呼声
根据模块的设计原则(40),对于模块的控制范围和模块的作用范围,理想的情况是(41)。
最新回复
(
0
)