首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性. ①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示. ②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也不可用α1,α2
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性. ①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示. ②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也不可用α1,α2
admin
2017-10-21
85
问题
设α
1
,α
2
,…,α
s
是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.
①如果β,γ都可用α
1
,α
2
,…,α
s
线性表示,则β+γ也可用α
1
,α
2
,…,α
s
线性表示.
②如果β,γ都不可用α
1
,α
2
,…,α
s
线性表示,则β+γ也不可用α
1
,α
2
,…,α
s
线性表示.
③如果β可用α
1
,α
2
,…,α
s
线性表示,而γ不可用α
1
,α
2
,…,α
s
线性表示,则β+γ可用α
1
,α
2
,…,α
s
线性表示.
④如果β可用α
1
,α
2
,…,α
s
线性表示,而γ不可用α
1
,α
2
,…,α
s
线性表示,则β+γ不可用α
1
,α
2
,…,α
s
线性表示.
选项
答案
正确的是①和④,②和③都不对. ①显然. ②不对,可用一个反例说明. 取β不可用α
1
,α
2
,…,α
s
线性表示,γ=一β,则γ也不可用α
1
,α
2
,…,α
s
线性表示,但是β+γ=0,可用α
1
,α
2
,…,α
s
线性表示. 用反证法说明③不对④对.如果β+γ可朋α
1
,α
2
,…,α
s
线性表示,则因为β可用α
1
,α
2
,…,α
s
线性表示,所以γ=(β+γ)一β;也可刚α
1
,α
2
,…,α
s
线性表示,与条件矛盾.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ZpH4777K
0
考研数学三
相关试题推荐
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设向量组α1,α2,α3,α4线性无关,则向量组().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设方程组无解,则a=__________.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
随机试题
Thereismuchdiscussiontodayaboutwhethereconomicgrowthisdesirable.Atanearlierperiod,ourdesireformaterialwealth
在Windows9x系统中,用于管理磁盘数据区的数据结构是_______。
(2004年第67题)下列关于急性白血病骨髓移植治疗的叙述,正确的是
下列药物为气血双补代表成药的是
下列选项中,不符合《建设工程安全生产管理条例》关于机械设备、施工机具和配件出租单位安全责任规定的项目是()。
甲、乙、丙三个计算期相同的互斥方案,若有△IRRV(乙-甲)>Ic,△IRR(丙-乙)<Ic,△IRR(丙-甲)>Ic,则各方案从优到劣的排列顺序是()。
借款费用,指企业因专门借款而发生的()。
甲、乙双方签订一份煤炭买卖合同,约定甲向乙购买煤炭。1000吨,甲于4月1日向乙支付全部煤款,乙于收到煤款半个月后装车发煤。3月31日,甲调查发现,乙的煤炭经营许可证将于4月15日到期,目前煤炭库存仅剩700余吨,且正加紧将库存煤炭发往别处。甲遂决定暂不向
现代农业的发展不能脱离生态安全和产品安全两个基本要求,因此,农业污染防治应作为现代农业发展的重要任务之一。不同于工业污染和城市污染,农业污染涉及面广而隐蔽性强.评估难度大,不适合建立惩罚型机制。同时,由于农民收入水平相对较低,不可能进行“污染收费”。所以说
和平基金会决定中止对S研究所的资助,理由是这种资助可能被部分地用于武器研究。对此,S研究所承诺:和平基金会的全部资助,都不会用于任何与武器相关的研究。和平基金会因此撤销了上述决定,并得出结论:只要S研究所遵守承诺,和平基金会的上述资助就不再会有利于武器研究
最新回复
(
0
)