首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
admin
2018-06-12
127
问题
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式
f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),
其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
选项
答案
曲线y=f(χ)在点(4,f(4))处的切线方程是 y=f(4)+f′(4)(χ-4). 由f(χ)的周期性以及f(χ)在χ=1处的可导性知f(4)=f(1),f′(4):f′(1),代入即得所求切线方程为 y=f(1)+f′(1)(χ-4). 由f(χ)的连续性可知 [*][f(1+tanχ)-4f(1-3tanχ)]=[*][26χ+g(χ)] [*]f(1)-4f(1)=0[*]f(1)=0. 再由f(χ)在χ=1处的可导性与f(1)=0可得 [*] 在①式左端中作换元tanχ=t,则有 [*] 而①式右端 [*] 从而有f′(1)=2. 于是曲线y=f(χ)在点(4,f(4))处的切线方程为y=2(χ-4),即y=2χ-8.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XUg4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2(2)P-1AP(3)AT(4)E-Aα肯定是其特征向量的矩阵共有()
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
已知四元齐次方程组(Ⅰ),的解都满足方程式(Ⅱ)χ1+χ2+χ3=0.①求a的值.②求方程组(Ⅰ)的通解.
定积分∫01arctan的值等于
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n-1,则线性方程组Ax=0的通解是________
求过两点A(0,1,0),B(-1,2,1)且与直线x=-2+t,y=1-4t,z=2+3t平行的平面方程.
回答下列问题设f(x1,x2,x3)=,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;
随机试题
下列除哪项外,均有脉率快的特点
实施性施工进度计划的编制应结合工程施工的具体条件,并以()所确定的里程碑事件的进度目标为依据。
企业按照公允价值计量准则计量相关资产或负债时,下列各项有关确定公允价值的表述中,不正确的有()。
阅读一高中语文教师讲授必修(3)《老人与海》的课后教学反思(节选),按要求答题。(画线语句的序号与选项的序号是对应的)。[A]贝壳阶段我参考了教师参考书等许多资料,结合单元重点和学生现状,确定了两课时的教学方案,[B]第一课时是题解,作者生平与创作介绍
象形文字(南京大学2013年世界史真题)
Linguisticsuse______torefertotheabstractlinguisticsystemsharedbythemembersofaspeechcommunity.
Theheartdiseasehasbeenoneofthemost______diseasestoendangerthehealthandresultindeath.
【B1】【B8】
SydneyOperaHousemustbeoneofthemostrecognizableimagesofthemodernworld—uptherewiththeEiffelTowerandtheEmpire
DoctorsataDutchhospital【S1】______anewkindofsurgeryonFridaytocorrectheartburn(胃痛)withoutmakinganyexternalincisi
最新回复
(
0
)