首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值是0,1,一1,则下列命题中不正确的是( )
设三阶矩阵A的特征值是0,1,一1,则下列命题中不正确的是( )
admin
2019-03-14
58
问题
设三阶矩阵A的特征值是0,1,一1,则下列命题中不正确的是( )
选项
A、矩阵A—E是不可逆矩阵.
B、矩阵A+E和对角矩阵相似.
C、矩阵A属于1与一1的特征向量相互正交.
D、方程组Ax=0的基础解系由一个向量构成.
答案
C
解析
因为矩阵A的特征值是0,1,一1,所以矩阵A—E的特征值是一1,0,一2.由于λ=0是矩阵A—E的特征值,所以A一E不可逆.故命题A正确.因为矩阵A+E的特征值是1,2,0,矩阵A+E有三个不同的特征值,所以A+E可以相似对角化.命题B正确.(或由A一A→A+E~A+E而知A+E可相似对角化).因为矩阵A有三个不同的特征值,知
因此,r(A)=r(A)=2,所以齐次方程组Ax=0的基础解系由n—r(A)=3—2=1个解向量构成,即命题D正确.命题C的错误在于,若A是实对称矩阵,则不同特征值的特征向量相互正交,而一般n阶矩阵,不同特征值的特征向量仅仅线性无关并不正交.
转载请注明原文地址:https://www.kaotiyun.com/show/V7j4777K
0
考研数学二
相关试题推荐
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小;
当x→0时,α(x)=kx2与是等价无穷小,则k=__________.
求极限
设向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T。试问:当a为何值时,向量组(I)与(Ⅱ)等价?当a为何值时,向量组
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由连接而成。求容器的容积;
设f(x)是连续函数,且F(x)=f(t)dt,则F’(x)等于
当x→0+时,若lxa(1+2x),(1一cosx)均是比x高阶的无穷小,则α的取值范围是
设f(χ)在χ>0上有定义,且对任意正实数χ,yf(χy)=χf(y)+yf(χ),f′(1)=2,试求f(χ)=_______.
判断下列结论是否正确,并证明你的判断.(Ⅰ)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又c∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则δ>0使得当0<|x-a|<δ时有界.
随机试题
某区人民法院在审理一起刑事案件过程中,发现被告人赵某犯有抢劫罪、盗窃罪、故意杀人罪,其中故意杀人罪应由某市中级人民法院审理。此案应如何确定审判管辖?
苦杏仁炮制的作用有
成年男子、轻体力劳动,蛋白质推荐摄入量(RNI)为()。
水泥混凝土路面采用滑模施工时要求最大水灰比不超过()
施工文件归档中,短期是指工程档案保存()年以下。
下列关于企业投资性房地产会计处理的表述中,正确的有()。
受理
作为项目负责人或团队领导,制订计划和实施计划时应注意()等。
求证级数绝对收敛。
Whereisthislanguageschoollocated?Itislocatedin______.Whocanhelpstudentsfindappropriatecourses?______canhel
最新回复
(
0
)