首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x-t)dt.求极限
设f(x)具有连续导数,且满足f(x)=x+∫0xtf’(x-t)dt.求极限
admin
2019-05-14
90
问题
设f(x)具有连续导数,且满足f(x)=x+∫
0
x
tf’(x-t)dt.求极限
选项
答案
由已知条件∫
0
x
tf’(x-t)dt可化为f(x)=x+x∫
0
x
f’(u)du-∫
0
x
uf’(u)du.两边对x求导,得:f’(x)=1+∫
0
x
f’(u)du+x f’(x)- x f’(x)=1+f(x)-f(0)= 1+f(x) (f(0)=0) 于是,f(x)=e
x
一1.所以[*]
解析
f(x)的表达式中含有参变量的积分,应经变量替换将参变量移至积分号外或积分限上,再求极限.∫
0
x
tf’(x-t)dt
∫
0
x
(x-u)f’(u)du=x∫
0
x
f’(u)du-∫
0
x
uf’(u)du将参变量x提到积分号外后,已知条件可化为:f(x)=x+x∫
0
x
f’(u)du-∫
0
x
uf’(u)du .
(1)本题的关键是求出f(x)的表达式.当已知条件是由积分方程给出时,通过求导可得出f(x)所满足的微分方程: f’(x)一f(x)=1, f(0)=0.由通解公式,可得通解为:f(x)=e
-∫(-1)dx
[∫1.e
∫(-1)dx
dx+c]=ce
x
-1 由f(0)=0,得f(x)=e
x
一1.一般地,一阶线性微分方程Y’+p(x)y=q(x)的通解为:y= e
-∫p(x)dx
[∫1.e
∫p(x)dx
+c]
(2)在计算含参变量的积分时,应通过变量替换将参变量提至积分号外或积分限上,再作计算.
转载请注明原文地址:https://www.kaotiyun.com/show/Uv04777K
0
考研数学一
相关试题推荐
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_________.
椭球面S1是椭圆=1绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转而成。(Ⅰ)求S1及S2的方程;(Ⅱ)求S1与S2之间的立体体积。
求直线L:绕z轴旋转所得旋转面与两平面z=0,z=1所围成的立体体积。
解微分方程y"’一y"一2y’=0。
求极限。
求极限。
设总体X服从二项分布B(10,P),χ1,…,χn是取自总体X的一个简单随机样本值.求未知参数p的最大似然估计量.
设二维随机变量(X,Y)服从二维正态分布,其分布参数μ1=μ2=0,σ12=σ22=1,ρ=/2.求证:(Ⅰ)关于X的边缘分布是正态分布;(Ⅱ)在X=χ条件下,关于Y的条件分布也是正态分布.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组Aχ=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
随机试题
影响行政组织结构与效率的决定性因素是()
患儿,4岁半,麻疹后发热20余天,乏力、精神委靡、盗汗,伴阵发性痉挛性咳嗽、气促,听诊肺部有少许干啰音,来院进行诊治。
脑血栓形成最常见的病因是
休克肺晚期常发生
引起Ⅱ型呼吸衰竭最常见的诱因是()。
国家公务员实行交流制度。交流,包括()内容。
在编制人工定额时,对工人工作时间按其消耗性质进行分类,属于必须消耗的时间有()。
论述租船方式及租船程序。
在情节反应中,与愤怒情绪产生关系最密切的神经中枢是()。(2018年)
ThinkandActorActandThinkThemajorityofsuccessfulseniormanagersdonotcloselyfollowtheclassicalrationalmodel
最新回复
(
0
)