首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. 若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
[2009年] 设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3. 若二次型f(x1,x2,x3)的规范形为y12+y22,求a的值.
admin
2019-06-25
78
问题
[2009年] 设二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
-2x
2
x
3
.
若二次型f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,求a的值.
选项
答案
解一 由于f的规范形为y
1
2
+y
2
2
,A合同于[*]故秩(A)=[*]=2. 因而|A|=λ
1
λ
2
λ
3
=0. 当λ
1
=0即a=0时,λ
2
=1,λ
3
=-2,此时f的规范形为y
3
2
-y
2
2
,不符合题意. 当λ
2
=a+1=0即a=-1时,λ
1
=-1,λ
3
=-3,此时f的规范形为-y
1
2
-y
3
2
,不符合 题意. 当λ
3
=a一2=0即a=2时,λ
1
=2,λ
2
=3,此时f的规范形为y
1
2
+y
2
2
,符合题意. 综上所述,可知a=2. 解二 二次型f的规范形为y
1
2
+y
2
2
,说明f的矩阵有两个正特征值,另一个特征值为0,即f的正惯性指数为2,负惯性指数为0,但到底哪一个特征值为0呢? 若λ
1
=a=0,则λ
2
=1>0,λ
3
=-2<0,不符合题设要求. 若λ
2
=0,即a=-1,这时λ
1
=a=-1<0,λ
3
=a-2=-3>0,不符合题设要求. 若λ
3
=0,即a=2,则λ
1
=a-2>0,λ
2
=a+1=1+2=3>0,符合题设要求. 因而a=2.于是A的三个特征值分别为λ
1
=2,λ
2
=3,λ
3
=0. 解三 由于厂的规范形为y
1
2
+y
2
2
,A有两个正特征值,另一个特征值为0.又a-2<a<a+1,故a=2就可达到要求,因而λ
1
=2,λ
2
=3,λ
3
=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/UTJ4777K
0
考研数学三
相关试题推荐
计算
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设B为三阶非零矩阵,且AB=O,则r(A)=____________.
曲线y=(x一1)(x一2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
设求曲线y=f(x)与x轴所围成的平面区域的面积.
求曲线y=x2一2x与直线y=0,x=1,x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设当x>0时,方程有且仅有一个根,求k的取值范围.
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f"(x)<0,则在(0,a]上().
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
随机试题
A.胞核B.胞液C.线粒体D.内质网氧化磷酸化的反应部位在细胞的
下列方法中,测定还原性抗坏血酸的方法是
异烟肼的作用特点是
颞下颌关节盘内含神经血管的部分是
失血性休克病人的脉搏特征是( )。【历年考试真题】
评价混凝土硬化后的抗碳化性、抗渗性、抗冻性、抗侵蚀性等性能技术要求的是混凝土的()指标。
城乡住户调查中的部分材料如下:小王一家有3口人,妻子小张在超市上班,儿子在本市就读小学3年级。2013年12月,小王获得工资6500元,妻子得到工资3000元及超市发放的价值500元的各类下架蔬菜,小王自住房屋折算净租金为2000元,出租第二套房屋月租金为
为适应电子政务的需要,我国确定“政府上网年"为()。
尺子:距离与()在内在逻辑关系上最为相似。
一家商场按下述方式促销商品:一年中任何时候,或者有季节性促销,或者有节日促销,或者兼而有之。每一种促销都会持续一个月。在任何一个月,如果商场想要把某一类商品清仓,就宣布季节性促销;如果某个月份有节日并且仓库中仍有剩余商品,就宣布节日促销。不过,11月没有节
最新回复
(
0
)