首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形; (2)|E+A+A2+…+An|的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形; (2)|E+A+A2+…+An|的值.
admin
2016-09-30
84
问题
设n阶实对称矩阵A的秩为r,且满足A
2
=A(A称为幂等阵).
求:(1)二次型X
T
AX的标准形; (2)|E+A+A
2
+…+A
n
|的值.
选项
答案
(1)因为A
2
=A,所以|A||E一A|=0,即A的特征值为0或者1,因为A为实对称矩阵,所以A可对角化,由r(A)=r得A的特征值为λ=1(r重),λ=0(n一r重),则二次型X
T
AX的标准形为y
1
2
+y
2
2
+…+y
r
2
. (2)令B=E+A+A
2
+…+A
n
,则B的特征值为λ=n+1(r重),λ=1(n一r重),故 |E+A+A
2
+…+A
n
|=|B|=(n+1)
r
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Tdw4777K
0
考研数学一
相关试题推荐
设g(χ)二阶可导,且f(χ)=(Ⅰ)求常数a的值,使得f(χ)在χ=0处连续;(Ⅱ)求f′(χ),并讨论f′(χ)在χ=0处的连续性.
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
设函数f(x)=∫1xdt,证明:存在ξ∈(1,2),f(ξ)=(2-ξ);
已知函数f(x)连续,且=1,g(x)=∫01f(xt)dt,求g’(x),并证明g’(x)在x=0处连续.
设A为三阶矩阵,α1,α2为A的属于特征值1的线性无关的特征向量,α3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为().
设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则().
设二二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值。(Ⅰ)试用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
差分方程yt+1-yt=t2t的通解为_______.
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
随机试题
驾驶机动车遇到沙尘、冰雹、雨、雾、结冰等气象条件如何行驶?
适用于所有实验室认可的国际标准是
2004年上海宝山钢铁集团从南非进口一批铁矿石,分两批各200t,由巴拿马籍轮船运进。2004年5月10日,第一批货物进口,正好同合同相符;2004年9月19日,第二批由于日本的客户不履行合同导致卸在我国港口250t优质铁矿石,经我国钢铁集团和南非出口商协
可靠性与维修性的常用质量参数有()。
发生溺水时,要放松全身,让身体漂浮在水面上,将头部浮出水面,用脚踢水,等待救援。()
“会当凌绝顶,一览众山小”描绘的是()。
某住户安装了分时电表,白天电价是0.55元,夜间电价是0.3元,计划7月份用电400度,电费不超过160元,那么,白天用电不应超过多少度?()
教育目的主要回答的两个问题是()
(厦门大学2011年初试真题)影响税负转嫁的最主要因素是()。
Forthispart,youareallowed30minutestowriteanessaybasedonthepicturebelow.Youshouldstartyouressaywithabrief
最新回复
(
0
)