首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
设 (Ⅰ)求 (Ⅱ) 求J1=∫L(x,y)dx+Q(x,y)dy,其中L是椭圆周2x2+3y2=l,取逆时针方向. (Ⅲ) 求J2=∫C(x,y)dx+Q(x,y)dy,其中C是圆周x2+y2=32,取逆时针方向.
admin
2017-11-23
61
问题
设
(Ⅰ)求
(Ⅱ) 求J
1
=∫
L
(x,y)dx+Q(x,y)dy,其中L是椭圆周2x
2
+3y
2
=l,取逆时针方向.
(Ⅲ) 求J
2
=∫
C
(x,y)dx+Q(x,y)dy,其中C是圆周x
2
+y
2
=3
2
,取逆时针方向.
选项
答案
(Ⅰ) [*] (Ⅱ)可考虑用格林公式求J
1
.曲线L: [*] 围成区域记为D
1
.P(x,y),Q(x,y)当(x,y)≠(一l,0)时处处 有连续偏导,(一1,0)∈D
1
,又 [*] 于是在D
1
上可用格林公式得 [*] (Ⅲ)因为 [*] 也考虑用格林公式计算J
2
.因为P,Q在点(一1,0)处没定义, 所以不能在C围成的区域D
2
上直接用格林公式.但可在D
2
中挖掉以(一1,0)为圆心,ε>0充分小为半径的圆所余下的区域中用格林公式见图. [*] 求解如下: 以(一1,0)为圆心ε>0充分小为半径作圆周C
ε
-
(取顺时针方向),C
ε
与C围成的区域记为D
ε
,在D
ε
上用格林公式得 [*] 其中C
ε
+
取逆时针方向. 用“挖洞法”求得(*)式后,可用C
ε
的方程 (x+1)
2
+y
2
=ε
2
简化被积表达式,然后用格林公式得 [*] 其中D
ε
*
是C
ε
+
所围的区域.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Qyr4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:
曲线的全部渐近线为__________.
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足且f(0)
在密度为1的半球体的底面接上一个相同材料的柱体:一h≤z
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
随机试题
设f(x)是以3为周期的可导函数,且f’(一1)=1,则
眩晕肝阳上亢证的代表方宜首眩晕痰湿中阻证的代表方宜首选
患儿,6个月,北方冬季出生,母乳喂养,患儿近期多汗、易惊,查体:前囟大,方颅、串珠肋。
多商标模式品牌战略的优势在于()。
监控培训的(),可评估受训者在不同培训阶段的提高和进步幅度,及时发现差距并采取补救措施。(2003年8月三级真题)
公文在传达制发机关决策与意图,体现制发机关的意志与权力方面的重要特征是()。
关于RSA算法的叙述不正确的是()。
设有关系模式S(Sno,Sname,Pno,Pname,Q,A)表示销售员销售商品情况,其中各属性的含义是:Sno为销售员员工号,Sname为销售员姓名,Pno为商品号,Pname为商品名称,Q为销售商品数目,A为销售商品总金额。根据定义有如下函数依赖集:
Thetopoftheworldisawonderland.Inwinter,thetemperatureoftenfallsto-30°Fandthesunneverrises.Theoceanissurr
Labelthediagrambelow.ChooseONEORTWOWORDSfromtheReadingPassageforeachanswer.Writeyouranswersinboxes20-23
最新回复
(
0
)