首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-23
73
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE—A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Q7N4777K
0
考研数学二
相关试题推荐
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设A为实矩阵,证明ATA的特征值都是非负实数.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
随机试题
教学测量
心理咨询的目标之一就是促使行为变化。
患者男,30岁,油漆工人。因心悸、气短、面色苍白、下肢反复瘀点2年来诊。查体:重度贫血貌,心率120次/min,心尖部可闻及2级SM,肝脾肋下未触及。检测WBC3.0×109/L,RBC2.0×1012/L,Hb60g/L,PLT35×109/L,MCV9
大输液的滤过、灌封要求的洁净级别
治疗湿热壅阻型慢性盆腔炎的治法是
[2008年第050题]按清代工部《工程作法》规定,大木小式建筑的面阔尺度由下列哪项来确定:
贷款合同管理是指按照银行内部控制与风险管理的要求,对贷款合同的()等一系列行为进行管理的活动。
操作风险评估方法中,自我评估法从()两个角度来评估风险的大小。
社区居委会规范化建设要以()为依据。
化妆品:镜子
最新回复
(
0
)