首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
admin
2018-11-16
95
问题
设F(x)=
,求F
’
(x)(x>-1,x≠0)并讨论F
’
(x)在(-1,+∞)上的连续性。
选项
答案
先将F(x)转化为变限积分,令s=xt,则F(x)=[*]①→F
’
(x)[*]② 下面讨论F
’
(x)的连续性,因In(1+s),sIn(1+s)当s>-1时连续,于是由②式及变限积分的连续性与连续性运算法则知当x>-1且x≠0时F
’
(x)连续,余下只需再求F
’
(0)并考察F
’
(x)在点x=0处的连续性。 注意F(0)=0,且[*], 从而F(x)在点x=0处连续,又[*],于是F
’
(0)=[*],因此[*]F
’
(x)=F
’
(0),F
’
(x)在点x=0处连续,这就证明了F
’
(x)在(-1,+∞)上连续。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PyW4777K
0
考研数学三
相关试题推荐
设g(x)=∫0xf(u)du,其中f(x)=则g(x)在(0,2)内().
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求矩阵A.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组Ax=0与BX=0有公共的非零解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
设总体X~B(1,p).X1,X2,…,Xn是来自X的样本.(1)求(X1,X2,…,Xn)的分布律;(2)求,E(S2).
函数在区间[0,2]上的平均值为________.
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
设f(x)=,讨论函数f(x)的连续性,若有间断点,指明其类型.
随机试题
A.煮沸灭菌法B.高压蒸汽灭菌法C.火烧法D.前二者均可E.三者均不能
痉证的病理性质为
工程项目索赔发生的原因中,属于不可抗力因素的有()。
证券交易风险防范可以从多方面着手,但下面的()不属于其中的内容。
某企业预测2017年度销售收入净额为4500万元,现销与赊销比例为1:4,应收账款平均收账天数为60天,变动成本率为50%,企业的资金成本率为10%。一年按360天计算。要求:计算2017年度赊销额。
用途较为广泛的成本转移价格形式有()。
越来越多的孩子,甚至是低龄儿童,都学会了玩电子产品。数据表明,手机、平板电脑等小屏幕的电子产品对孩子视力屈光度的影响远大于电视、投影。孩子使用电子产品大于20分钟以后经常出现揉眼睛的动作,说明眼睛已经很疲劳了。长期下来,近视度数就逐渐加深。尤其在黑暗的地方
ShouldtheTreasurysellitseconomicforecastingcomputersforscrap?ForthepasttwoyearsnooneoutsidetheConservativePa
最简单的交换排序方法是()。
下列各选项中,不属于Internet应用的是()。
最新回复
(
0
)