首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
设n阶方阵A=(aij)n×n的每行元素之和为0,其伴随矩阵A*≠O,若a11的代数余子式A11≠0,求方程组 A*x=0的通解.
admin
2020-04-30
50
问题
设n阶方阵A=(a
ij
)
n×n
的每行元素之和为0,其伴随矩阵A
*
≠O,若a
11
的代数余子式A
11
≠0,求方程组
A
*
x=0的通解.
选项
答案
由已知 [*] 所以方程组Ax=0有非零解,从而r(A)<n,又由于A
*
≠O,r(A)≥n-1,所以r(A)=n-1,从而r(A
*
)=1,因此方程组A
*
x=0的基础解系有n-1个解向量,又r(A)=n-1,所以|A|=0,于是A
*
A=|A|E=O,因此矩阵A的n个列向量都是方程组A
*
x=0的解,若令A=(α
1
,α
2
,…,α
n
),由于a
11
的代数余子式A
11
≠0,且r(A)=n-1,所以向量组α
2
,…,α
n
线性无关,从而A
*
x=0的基础解系为α
2
,…,α
n
,于是A
*
x=0的通解为k
1
α
2
+…+k
n-1
α
n
,其中k
1
,k
n-1
为任意常数.
解析
本题是抽象线性方程组的求解问题.要先确定矩阵A的秩r(A),再由r(A)和r(A
*
)的关系确定A
*
的秩r(A
*
),然后由A
*
A=|A|E=O确定A
*
x=0的通解.
转载请注明原文地址:https://www.kaotiyun.com/show/Nbv4777K
0
考研数学一
相关试题推荐
设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为
设矩阵是满秩的,则直线().[img][/img]
(08年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
(2009年试题,一)设A,B均为二阶矩阵,A*,B*分别为A,曰的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
(06年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加到第2列得C,记P=,则
(2006年试题,二)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是().
设A,B为满足AB=O的任意两个非零矩阵,则必有
随机试题
下列关于折旧的说法不正确的是()
家禽胚胎的卵裂方式属于
有机磷农药中毒时,污染部位的清洗要用()
在现行《公路工程质量检验评定标准》中,()是沥青混凝土面层的实测项目。
股票代表了股东对股份公司的所有权,所以股票是物权证券。()
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
甲公司为一家机械设备制造企业,按照当年实现净利润的10%提取法定盈余公积。20×4年3月,新华会计师事务所对甲公司20×3年度财务报表进行审计时,现场审计入员关注到其20×3年以下交易或事项的会计处理:(1)20×2年1月1日,甲公司以每股25元的价格购
当前,一些单位、部门只收费不办事,或收了费没办好事,有的甚至把乱收费获得的资金用来盖住宅、盖办公大楼、购小汽车、发奖金、大吃大喝等等。乱收费的不正之风严重腐蚀人们的思想,而且使一部分干部掉进违纪、犯罪的深渊。这段话直接支持了这样一种观点,即乱收费(
有人曾________“人工智能是个筐,什么都能往里装”,虽然________,但也说明了现状。通常,当解决问题需要推理、决策、理解、学习这类最基本的技能时,我们才认为它跟人工智能相关。常见的人工智能技术应用有指纹识别、人脸识别、机器翻译等。很多通过机械的
Radioactivityoccursnaturally.Themainsourcecomesfromnaturalsourcesinspace,rocks,soilwaterandeventhehumanbodyi
最新回复
(
0
)