首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
admin
2016-10-20
77
问题
设有微分方程y’-2y=φ(x),其中φ(x)=
试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
选项
答案
这是一个一阶线性非齐次微分方程,由于其自由项为分段函数,所以应分段求解,并且为保持其连续性,还应将其粘合在一起. 当x<1时,方程y’-2y=2的两边同乘e
-2x
得(ye
-2x
)’=2e
-2x
,积分得通解y=C
1
e
2x
-1; 而当x>1时,方程y’-2y=0的通解为y=C
2
e
2x
. 为保持其在x=1处的连续性,应使C
1
e
2
-1=C
2
e
2
,即C
2
=C
1
-e
-2
,这说明方程的通解为 [*] 再根据初始条件,即得C
1
=1,即所求特解为y= [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LeT4777K
0
考研数学三
相关试题推荐
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
设P(A)=0或1,证明A与其他任何事件B相互独立.
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设一柱体的底部是xOy,面上的有界闭区域D,母线平行于x轴,柱体的上顶为一平面,证明:柱体的体积等于D的面积与上顶平面上对应于D的形心的点的竖坐标的乘积.
设有一力场,场力的大小与作用点与z轴的距离成反比(比例系数为k),方向垂直于z轴并且指向z轴,试求一质点沿圆弧x=cost,y=1,z=sint从点(1,1,0)依t增加的方向移动到点(0,1,1)时场力所做的功.
求下列函数的极值:
求下列曲线在指定点处的曲率及曲率半径:(1)椭圆2x2+y2=1在点(0,1)处;(2)抛物线y=x2-4x+3在顶点处;(3)悬链线y=acoshx/a(a>0),在点(x。,y。)处;(4)摆线在对应t=π/2的点处;(5)阿基米德螺线ρ=a
随机试题
以下不是彩色属性的是()
薄荷宜采用的水处理方法是
用马、牛等杂次废毛掺适量植物纤维和糨糊制成的毛毡,在建筑中下列用途哪一条并不合适?[2003-059]
根据《国内航空运输承运人赔偿责任限额规定》,对每名旅客随身携带物品的赔偿责任限额为()。
传统简历调查与档案考核的测评手段,具有信息量小、科学性差、缺乏预测性的缺点。采用()的方式进行简历分析可以弥补这一不足。
AftertheWWII,theUSsetupNATO,whichisshortfor______.
科学家在南极洲的海底钻探揭晓了数千万年前南极洲的真实状况,他们发现了与现今截然不同的远古南极洲。在距今4800万—5500万年前的始新世时期,这里温度较高,或许拥有一片绿色海岸。以下哪项如果为真,最能支持上述结论?
(2006年真题)某县法院在审理一起民事案件中,为查明案件事实,对一当事人的信件进行拆检,弄清了案情并作出判决。下列说法中正确的是,
Contrary_____alladvice,hestartedtoclimbthemountainduringastorm.
A、Itchargesatareducedrate.B、Itisavailableeveryday.C、Itisopentoallpeople.D、Itisprovidedonlyintheevening.D
最新回复
(
0
)