首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f′(ξ)=0.
admin
2018-08-12
67
问题
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
证明:存在ξ∈(0,3),使得f′(ξ)=0.
选项
答案
因为f(χ)在[0,3]上连续,所以f(χ)在[0,2]上连续,故f(χ)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在C∈[0,2],使得f(c)=1. 因为f(χ)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在ξ∈(c,3)[*](0,3),使得f′(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LLj4777K
0
考研数学二
相关试题推荐
求微分方程的通解.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设,求f(x)的间断点并判断其类型.
设矩阵A满足(2E-C-1B)AT=C-1,且,求矩阵A
设ψ(x)是以2π为周期的连续函数,且φ’(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
防空洞的截面拟建成矩形加半圆(如图1.2—1),截面的面积为5平方米,问底宽z为多少时才能使建造时所用的材料最省?
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______.
求微分方程y"(3y’2一x)=y’满足初值条件y(1)=y’(1)=1的特解.
随机试题
对同一反应,活化能一定,则反应的起始浓度越低,反应的速率常数对浓度的变化越敏感。()
在人类社会发展中起决定作用的是()
患者,男,67岁。慢性肺气肿病史30多年。2周前感冒,后出现发热、咳嗽,咳大量黏液脓痰,近3日来咳嗽无力,痰不易咳出,气急、发绀。不可采取的护理措施是
牡丹皮与赤芍共有功效为
甲借用乙的山地自行车,刚出门就因莽撞骑行造成自行车链条断裂,甲将自行车交给丙修理,约定修理费100元。乙得知后立刻通知甲解除借用关系并告知丙,同时要求丙不得将自行车交给甲。丙向甲核实,甲承认。自行车修好后,甲、乙均请求丙返还。对此,下列哪一选项是正确的?(
根据《证券法》规定,上市公司应当在每一会计年度的上半年结束之日起一定期限内制作并公告半年度报告。这里的一定期限内是指( )。
()对于皮肤癌相当于霉菌对于()
由关系R1和R2得到关系R3的操作是()。
AroundCityTheArtsSportsOpera&BalletMovies
Naturehassuppliedeveryanimal【C1】______manwithsome【C2】______forhisbodysuchasfur,feathers,hair,orathickhide.But
最新回复
(
0
)