首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
admin
2022-04-08
69
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
—α
3
=(2,0,—5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通解x=___
选项
A、
B、
C、
D、
答案
A
解析
由于n—r(A)=4—2=2,故方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除(C),(D).
因为A
(α
2
+2α
3
)=b,a(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)
T
都是方程组Ax=b的解.(A)和B中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.
由于3(α
1
+α
2
—α
3
)一(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
—α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://www.kaotiyun.com/show/LBf4777K
0
考研数学二
相关试题推荐
设f(x)的导数在x=a处连续,又,则
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Aχ=b的互不相等的解,则对应的齐次线性方程组Aχ=0的基础解系【】
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
某五元齐次线性方程组的系数矩阵经初等变换化为,则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
设A是m×n阶矩阵,下列命题正确的是().
设A是m×n矩阵,r(A)=r.则方程组AX=β
设三阶常系数齐次线性微分方程有特解y1=eχ,y2=2χeχ,y3=3e-χ,则该微分方程为().
累次积分可以写成()
若连续函数f(x)满足关系式,则f(x)等于
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为
随机试题
属于专门关系运算的是()
目前,德国国内实行()的广播电视体制。
A.收缩压B.舒张压C.脉压D.平均动脉压E.体循环平均动脉压心动周期中主动脉压最低值为
咬肌间隙感染如未及时切开引流,最常引起的并发症是
紫菀的功效是
《节约能源法》所指节约能源,是指加强用能管理,采取技术上可行、经济上合理以及环境和社会可以承受的措施,从能源(),降低消耗、减少损失和污染物排放、制止浪费,有效、合理地利用能源。
按敷设方式分热力网最常见的为:管沟敷设、直埋敷设、()。
下列各项中,()不能被列入遗产范围。
社会治安综合治理的基本内容包括()。
实践是认识发展的动力,表现在()。
最新回复
(
0
)