首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
admin
2019-02-01
49
问题
设f(x)=|(x一1)(x一2)
2
(x一3)
3
|,则导数f’(x)不存在的点的个数是( )
选项
A、0。
B、1。
C、2。
D、3。
答案
B
解析
考查带有绝对值的函数在x
n
点处是否可导,可以借助如下结论。
设f(x)为可导函数,则
①若f(x
0
)≠0,且f(x)在x
0
处可导,则|f(x)|在x
0
处可导;
②若f(x
0
)=0,且f’(x
0
)=0,则|f(x)|在x
0
处可导;
③若f(x
0
)=0,且f’(x
0
)≠0,则|f(x)|在x
0
处不可导。
设φ(x)=(x一1)(x一2)
2
(x一3)
3
,则f(x)=|φ(x)|。f’(x)不存在的点就是f(x)不可导的点,根据上述结论可知,使φ(x)=0的点x
1
=1,x
2
=2,x
3
=3可能为不可导点,故只需验证φ’(x
i
)(i=1,2,3)是否为零即可,而φ’(x)=(x一2)
2
(x一3)
2
+2(x一1)(x一2)(x一3)
3
+3(x一1)(x一2)
2
(x一3)
3
,显然,φ’(1)≠0,φ’(2)=0,φ’(3)=0,所以只有一个不可导点x=1。故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/Juj4777K
0
考研数学二
相关试题推荐
设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
设在区[e,e2]上,数p,q满足条件px+q≥lnx求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设向量组α2,α3,α4线性无关,则下列向量组中,线性无关的是()
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
设f(x)=,为了使f(x)对一切x都连续,求常数a的最小正值.
已知y1=3,y2=3+χ2,y3=3+eχ.是二阶线性非齐次方程的解,则所求方程为_______,通解为_______.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1=
随机试题
某病毒性心肌炎病人,每两个窦性搏动后出现一个室性早搏,需及早( )
健康教育的核心是
下列入汤剂需后下的药物是
A.细胞水肿B.脂质沉积C.结缔组织玻璃样变D.血管壁玻璃样变E.细胞内玻璃样变肝细胞胞浆内嗜酸性小体
个体产生新奇独特的、有社会价值的产品能力或特性称之为______。
如果比较全日制学生的数量,东江大学的学生数是西海大学的70%,如果比较学生总数量(全日制学生加上成人教育学生),则东江大学的学生数是西海大学的120%。由上文最能推出以下哪项结论?
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=________.
A、 B、 C、 D、 C
LachlanCommunityFairTheLachlanCommunityFairwJlTaKeplaceonSaturdaythe19thofOctober.Thisisapopularannuale
Myanmar’soppositionleader,DawAungSanSuuKyi,confirmedonTuesdaythatshewouldrunfromaseatinthecountry’snewParl
最新回复
(
0
)