首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
admin
2018-05-25
86
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f’’(η)-3f’(η)+zf(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0, 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
-2x
[f’’(x)-3f’(x)+2f(x)]且e
-2x
≠0, 所以f’’(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JoW4777K
0
考研数学三
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:存在η∈[-a,a],使a3fˊˊ(η)=3∫-aaf(x)dx.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
根据阿贝尔定理,已知(x-x0)n在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1-x0|;(2)若在x1处发散,则收敛半径R≤|x1-x0|;(3)若在x1处条件收敛,则收
已知矩阵相似.(1)求x与y;(2)求一个满足P-1AP=B的可逆矩阵P.
设X1,X2,Xn是来自总体N(0,σ2)的简单随机样本,记U=X1+X2与V=X2+X3,则(U,V)的概率密度为_________.
下列矩阵中能相似于对角阵的矩阵是()
设f(u,υ)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’x(1,2)=1,f’y(1,2)=4,则f(1,2)=________.
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设则A-1=____________.
设则f(x)有().
随机试题
肠套叠患者的粪便呈()。
在制备颗粒剂和片剂的工艺中,都需要对干燥后的颗粒进行整粒。一般采用的整粒办法是
科技研究开发项目可分为()两个类型。
拟建工程与在建工程采用同一施工图编制预算,但两者的基础部分和现场施工条件部分存在不同。对于相同部分的施工图预算审查,应优先采用的审查方法是()
一国的国际收支中,记入资本和金融账户的是()。
关于绩效管理的说法,错误的是()。
丙二酸对于琥珀酸脱氢酶的影响属于
第二次世界大战期间,德国侵略英国的作战计划称为()。
ThemoleculesofcarbondioxideintheEarth’satmosphereaffecttheheatbalanceoftheEarthbyactingasaone-wayscreen.(1
WhichofthefollowingpoetsdrawsrichnutritionfromChineseclassicalpoems?
最新回复
(
0
)