首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
admin
2018-12-21
105
问题
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f
”
(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时 ( )
选项
A、f(x)>0.
B、f
’
(x)<0.
C、f
’
(x)与x同号.
D、f
’
(x))与x异号.
答案
D
解析
由f(x)=g(x)﹢g(-x),有f
’
(x)=g
’
(x)-gf
’
(-x),f
’
(0)=0,f
”
(x)=g
”
(x)﹢g
”
(-x)﹤0.
将f
’
(x)在x=0处按泰勒公式展开,有f
’
(x)=f
’
(0)﹢f
”
(ξ)x=f
”
(ξ)x,ξ介于0与x之间,
可见当x≠0时,f
’
(x))与x异号,选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/JAj4777K
0
考研数学二
相关试题推荐
(2009年)设函数f(χ,y)连续,则∫12dχ∫χ2f(χ,y)dy+∫12dy∫y4-yf(χ,y)dχ=【】
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2000年)设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下部分的面积,试求∫0χS(t)dt(χ≥0).
(1998年)设(2E-C-1B)AT/C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
(2012年)证明:χln(-1<χ<1).
(1990年)过P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形.求此平面图形绕χ轴旋转一周所成旋转体的体积.
(1987年)求过曲线y=χ2+1上的一点,使过该点的切线与这条曲线及χ,y轴在第一象限围成图形的面积最小,最小面积是多少?
(2001年)设当χ→0时,(1-cosχ)ln(1+χ2)是比χsinχn高阶的无穷小,而χsinχn是比(-1)高阶的无穷小,则正整数n等于【】
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
随机试题
细菌菌落计数时,如果两稀释度菌落数都大于300,以低倍计数;如两稀释度菌落数都小于30,则以高倍计数。()
互联网的一个最主要的应用是()
肝硬化病人能量的主要来源是
导致非计划性风险自留的主要原因有()。
教师智能结构包括()
生长发育
下列属于罗杰斯教学观的是()。
在新民主主义条件下保护民族工商业,发展资本主义,是由下列因素决定的
Thedealisdone:untilafewyearsagoarelativelyknown【S1】______Chinesecarmaker,hasgotitshandsonaniconicmar
Singaporeiswellknownasamulti-racial,multi-culturalandmulti-religiousnation.Andthis【C1】______isgraduallybecoming
最新回复
(
0
)