首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
admin
2019-06-28
98
问题
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f′
+
(a)>0,f′
-
(b)>0, 由f′
+
(a)>0,存在χ
1
∈(a,b),使得f(χ
1
)>f(a)=0; 由f′
-
(6)>0,存在χ
2
∈(a,b),使得f(χ
2
)<f(b)=0, 因为f(χ
1
)f(χ
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(χ)=[*],显然h(χ)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h′(ξ
1
)=h′(ξ
2
)=0, [*] 令φ(χ)=f′(χ)g(χ)-f(χ)g′(χ),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而φ′(χ)=f〞(χ)g(χ)-f(χ)g〞(χ), 所以[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IiV4777K
0
考研数学二
相关试题推荐
已知A为三阶方阵,A2一A一2E=O,且0<|A|<5,则|A+2E|=_________。
求函数f(x)=sinx的间断点,并指出其类型。
求极限。
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1。
设函数z=f(x,y)(xy≠0)满足f(xy,)=y2(x2一1),则dz=________。
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。写出二次型f的矩阵表达式;
设A=,ξ1=。求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。A是否可对角化?
随机试题
由于线路原因使部分在用业务系统阻断的障碍称为全阻障碍。
Beingbothspoiltandlazyhe______everyoneelseforhislackofsuccess.
肾细胞癌的副肿瘤综合征包括
多数口腔癌患者血清中何种维生素含量很低
()是对自己拥有或拟取得的房地产,自己提出估价要求,并自己进行估价。
甲公司2011年3月1日至2013年1月5日发生下列与长期股权投资有关的经济业务:(1)甲公司2011年3月1日从证券市场购入乙公司发行在外30%的股份并准备长期持有,对乙公司能够施加重大影响,实际支付款项2000万元(含已宣告但尚未发放的现金股利6
对于托收承付结果,银行负责进行扣款的期限为()。
Throughsomuchtrouble,helearned_________everyoneneededfriendshipand_________selfconfidenceisimportant.
立冬日,南部沿海地区仍处在夏季的主要原因是:
楽しかった休みが明日で________終わります。
最新回复
(
0
)