首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵. (2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2017-07-10
103
问题
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.
(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0. 设A的对角线元素为λ
1
,λ
2
,…,λ
n
.则AB的(i,j)位元素为λ
i
b
ij
,而BA的(i,j)位元素为λ
i
b
ij
因为AB=BA,得 a
i
b
ij
=λ
j
b
ij
, 因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j,则 CA的(i,j)位元素为c
ij
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而.c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HYt4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
U的分布函数为G(u)=P{U≤u}=P{X+Y≤u}=P{X+Y≤u,X=1}+P{X+Y≤u,X=2}=P{X+Y≤u|X=1}P{X=1}+P{X+Y≤u|X=2}P{X=2}=P{Y≤u-1|X=1}P
设f(x)为单调函数且二阶可导,其反函数为g(x),又f(1)=2,,f〞(1)=1.求gˊ(2),g〞(2).
在yOx面上,求与A(3,1,2),B(4,-2,-2)和C(0,5,1)等距的点.
计算y=e-x与直线y=0之间位于第一象限内的平面图形绕x轴旋转产生的旋转体的体积.
求下列各函数的导数(其中a为常数):
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设y=e-x是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
级数的收敛域为_____.
A.中性B.远中C.近中D.正中E.前伸正中时上颌第一磨牙近中颊尖咬在下颌第一磨牙颊沟的远中为
女性50岁,低热乏力两年,近五月来,四肢关节肌肉酸痛,上楼困难,同时在眼睑及面颊部出现红色皮疹,吞咽困难。体检:眼睑周围水肿,眼睑面颊、远端指间关节及甲根皱襞有暗紫红色斑。
A.下颌后牙颊尖舌斜面从中央窝沼上后牙舌尖颊斜面向舌侧继续滑行,约到一半处分离B.下颁后牙舌尖颊斜面沿上后牙广尖舌斜面向舌侧继续滑行,约到一半处分离C.工作侧上下颌后牙的同名尖彼此相对D.由正中牙合向上,向前,向上至对刃E.由对刃滑行回归至正中颌
经脉属金,腧穴也属金的穴位是
在采取自营方式建造固定资产时,下列说法正确的有()。
①什么书在什么时候再去读再去翻,连我自己也无把握,完全要看一个时期一个时期的兴趣②关于这事,我常自比为古时的皇帝,而把插在架上的书譬诸列屋而居的宫女③知道某册书是何种性质,其中大概有些什么可取的材料而已④除小说外,我少有全体读完的大部的书,只凭了购入
学生在学习正方形、长方形、三角形时已形成了轴对称图形概念,在学习圆时,学生立即就能发现圆具有轴对称图形的一切特征,从而得出“圆也是轴对称图形”的结论。这一学习属于()。
Singapore1.Singaporeisanindependentcity-stateinsoutheasternAsia,consistingofonemajorislandtheSingaporeIsland--an
Howlonghavetheynotmeteachother?
最新回复
(
0
)