首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ1=λ2=5对应的线性无关的特征向量为________.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ1=λ2=5对应的线性无关的特征向量为________.
admin
2019-08-28
60
问题
设A是三阶实对称矩阵,其特征值为λ
1
=3,λ
2
=λ
3
=5,且λ
1
=3对应的线性无关的特征向量为α
1
=
,则λ
1
=λ
2
=5对应的线性无关的特征向量为________.
选项
答案
α
2
=[*],α
3
=[*]
解析
因为实对称矩阵不同特征值对应的特征向量正交,令λ
2
=λ
3
=5对应的特征向量为
,由α
1
T
=0得λ
2
=λ
3
=5对应的线性无关的特征向量为α
2
=
,α
3
=
转载请注明原文地址:https://www.kaotiyun.com/show/GqJ4777K
0
考研数学三
相关试题推荐
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=,求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件
对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则()
(2016年)级数(k为常数)()
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
下列矩阵中,与矩阵相似的为()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t)(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
随机试题
焊接工艺规程包括哪些内容?
下肢静脉曲张的主要并发症是
以下项目一般不重复测量的是
属于兴奋剂目录所列的品种,并且药品零售企业可以经营的是()。
以下关于保险单作用的正确选项是()。
(),实现了由事后检查向事前监测、事后发现向事前预警、事后纠正向事前防范转变,有更强的风险监测、识别和化解能力,在监管成本不升高的情况下能取得更好效果,因此是更有效的监管。
()的宗旨是帮助低收入国家发展经济,提高生产力和生活水平。
下列生活中保存食物的方法,理解错误的是()。
Inthispartofthetest,youareaskedtogiveashorttalkonabusinesstopic.Youhavetochooseoneofthetopicsfromthe
【B1】【B7】
最新回复
(
0
)