首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
admin
2015-04-30
91
问题
设A为n阶矩阵,对于齐次线性方程(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,则必有
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
C、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
D、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
答案
A
解析
若α是(I)的解,即A
n
α=0,显然A
n+1
α=A(A
n
α)=AO=0,即α必是(Ⅱ)的解.可排除(C)和(D).
若η是(Ⅱ)的解,即A
n+1
η=0.假若η不是(Ⅰ)的解,即A
n
η≠0,那么对于向量组η,Aη,A
2
η,…,A
n
η,一方面这是n+1个n维向量必线性相关;另一方面,若
kη+k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,
用A
n
左乘上式,并把A
n+1
η=0,A
n+2
η=0,…,代入,得kA
n
η=0.
由于A
n
η≠0,必有k=0.对
k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,
用A
n-1
左乘上式可推知k
1
=0.
类似可知k
i
=0(i=2,3,…,n).于是向量组η,Aη,A
2
η,…,A
n
η线性无关,两者矛盾.所以必有A
n
η=0,即(Ⅱ)的解必是(Ⅰ)的解.由此可排除(B).故应选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/CFU4777K
0
考研数学三
相关试题推荐
劳动力成为商品是货币转化为资本的前提条件,这是因为()
社会主义改造基本完成后,不少人对新的社会制度还不能马上适应,再加上党和政府的一些工作部门存在着主观主义、官僚主义作风,引起一些群众的不满。1956年下半年,一些地区出现了工人罢工、学生罢课、农民退社等情况。与此同时,国际上出现的波兰、匈牙利事件,也在国内引
“中国采取的刺激经济一揽子举措让我很受鼓舞……这对世界来说是一个榜样”,“为战胜这场罕见的国际金融危机,世界需要‘中国经验’”。从外国企业家和大学教授的言语中得出的结论是()
材料1青春由磨砺而出彩,人生因奋斗而升华。面对突如其来的新冠肺炎疫情,全国各族青年积极响应党的号召,踊跃投身疫情防控人民战争、总体战、阻击战,不畏艰险、冲锋在前、真情奉献,展现了当代中国青年的担当精神,赢得了党和人民高度赞誉。今年是决胜全面小康、
2021年5月,中共中央办公厅印发了《关于向重点乡村持续选派驻村第一书记和工作队的意见》。根据该意见,下列不属于第一书记和工作队员人选的基本条件的是()。
将函数分别展开成正弦级数和余弦级数.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
计算下列极限:
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
随机试题
下列属于膨胀土的性质的有()。
下列属于爆炸品按其爆炸危险性的大小分类的是()。
为了便于结算,单位可以同时在几家金融机构开立基本存款账户。()
长江股份有限公司(以下简称长江公司)于2014年1月1日以银行存款3100万元取得大海股份有限公司(以下简称大海公司)30%的股权,对大海公司能够施加重大影响,大海公司当日的可辨认净资产的公允价值是11000万元。2014年1月1日,大海公司除一
职业道德是人们在从事职业活动的过程中形成的一种外在的、强制性的约束机制。()
设f(x)在(一∞,+∞)内可导,且对任意x1,x2,当x1>x2时,都有f(x1)>f(x2),则()
[A]SetaGoodExampleforYourKids[B]BuildYourKids’WorkSkills[C]PlaceTimeLimitsonLeisureActivities[D]Talkabout
小陈组织人员撰写的项目WBS如下:请说明上述WBS结构是将______作为第一层进行分解的。除了上述方法,还可以采用哪些方式进行分解。
为了在窗体上建立2组单选按钮,并且当程序运行时,每组都可以有一个单选按钮被选中,则以下做法中正确的是
1.WhydosomanyAmericansdistrustwhattheyreadintheirnewspapers?TheAmericanSocietyofNewspaperEditorsistryingto
最新回复
(
0
)