首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…一xn,n=2,3,…. (1)证明方程fn(x)=1在[0,+∞)有唯一实根xn; (2)求.
设fn(x)=x+x2+…一xn,n=2,3,…. (1)证明方程fn(x)=1在[0,+∞)有唯一实根xn; (2)求.
admin
2016-06-25
107
问题
设f
n
(x)=x+x
2
+…一x
n
,n=2,3,….
(1)证明方程f
n
(x)=1在[0,+∞)有唯一实根x
n
;
(2)求
.
选项
答案
f
n
(x)连续,且f
n
(0)=0,f
n
(1)=n>1,由介值定理,[*]x
n
∈(0,1),使f
n
(x
n
)=1,n=2,3,…,又x>0时,f’
n
(x)=1+2x+…+nx
n一1
>0,故f
n
(x)严格单增,因此x
n
是f
n
(x)=1在[0,+∞)内的唯一实根. (2)由(1)可得,x
n
∈(0,1),n=2,3,…,所以{x
n
}有界. 又因为f
n
(x
n
)=1=f
n+1
(x
n+1
),n=2,3,…,所以 x
n
+x
n
2
+…+x
n
n
=x
n+1
+x
n+1
2
+…+x
n+1
n
+x
n+1
n+1
, 即(x
n
+x
n
2
+…+x
n
)一(x
n+1
+x
n+1
2
+…+x
n+1
n
)=x
n+1
n+1
>0,因此x
n
>x
n+1
,n=2,3,…,即{x
n
}严格单调减少. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Bnt4777K
0
考研数学二
相关试题推荐
________.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f′(1)=0,f(2)=5/3.证明:存在ξ∈(0,2),使得f′″(ξ)=2.
广义积分=________。
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
设曲线的极坐标方程为ρ=eαθ(a>0),则该曲线上相应于θ从0变到2π的一段弧与极轴所围成的图形的面积为________.
差分方程yt+1+2yt=0的通解为________.
求微分方程的通解。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
设A为n阶方阵,A*为A的伴随矩阵,且A11≠0,证明:方程组Ax=b(b≠0)有无穷多解的充要条件中b为A*x=0的解.
随机试题
关于书刊装订样式的说法,错误的是()。
能抑制葡糖基转移酶活性,减少葡聚糖合成的天然植物药类是
生产经营单位及其有关人员对安全生产监督管理部门或者煤矿安全监察机构给予的行政处罚,享有();对行政处罚不服的,有权依法申请行政复议或者提起行政诉讼。
发生粉尘爆炸的首要条件是()。
在搭接网络计划中,终点节点一般代表的意义为( )。
沪市投资者可以使用其所持有的上海证券账户在申购日向上证所申购在上证所发行的新股,每一申购单位为()股。
根据误差产生的原因,从理论上讲,可以消除的误差是()。
WouldyoubelievethatthefirstoutstandingdeafteacherinAmericawasLaurentClerc,aFrenchman?At12,he【C1】______theRoya
UnderstandingCorporateCultureEverytimepeoplecometogetherwithasharedpurpose,cultureiscreated.Thisgroupofpeo
WhyIBecameaTeacher:toPassonMyLoveofLiteratureA)Likelotsofpeople,IneverthoughtI’dbeateacherwhenIwasats
最新回复
(
0
)