首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
admin
2018-04-15
85
问题
A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
选项
答案
因为(E+A)A=0,A≠0,知齐次方程组(E+A)x=0有非零解,即行列式|E+A|=0.所以λ=-1必是矩阵A的特征值.同理,λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理,λ=0也必是矩阵B的特征值. 对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因为BA=0,故Bα=0-0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量,因而α,β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Air4777K
0
考研数学一
相关试题推荐
当x>0时,曲线y=
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在ξ∈(0,1),使得f(ξ)=1一ξ;
如果x1x2>0,试证在x1与x2之间必至少存在一点,使=(1-ξ)eξ(x1-x2)成立。
设二维随机变量(X,Y)服从区域-1≤x≤1,0≤y≤2上的均匀分布,求二次曲面x12+2x22+Yx32+2x1x2+2Xx1x3=1为椭球面的概率。
已知,A*是A的伴随矩阵,则(A*A2)-1=________。
(1)求级数的和函数S(x);(2)将S(x)展开为x-π/3的幂级数。
求幂级数的收敛域及和函数。
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{x=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
将旅店的房租价格从每天75元提高到每天80元,会使出租量从每天100套降到每天90套.(1)求房租为每天75元时的需求价格弹性;(2)求房租分别为每天75元和80元时旅店的总收益;(3)问该旅店是否应该提价?
随机试题
下列哪几种疾病情况可以行膀胱镜检查
患者男性,20岁,乏力、纳差5天,尿黄3天,查巩膜黄染,肝肋下1cm,脾肋下未及,ALT1250U/L,抗HBs(+),抗HAVIgM(+),3年前曾患"急性黄疸型肝炎",已愈。该患者最应诊断为
职业健康安全管理体系与环境管理体系的作业文件包括()。
保险的赔付地点一般填写()。
“管理运动”是人们对于管理重要性的认识以及由此而产生的对经济的重大影响过程,主要时间是()。
根据下表,完成126~130题。上表10个国家中,2004年进出口为逆差的国家有几个?()
新到一个部门,一天有人来找你解决问题,你努力想让他满意,可是始终得不到他的满意。他投诉你们部门工作效率低.你这个时候怎么做?
19世纪70至80年代,帝国主义列强从侵占中国周边邻国发展到蚕食中国边疆地区,使中国陷入“边疆危机”。“边疆危机”的主要表现有()
Today’skindergartenersareheavierthankidsbroughtupinthe1970sand1980sandappeartobeontheroadtobecome【M1】______
BabyBoomersAreKillingThemselvesatanAlarmingRate[A]Ithaslongheldtruethatelderlypeoplehavehighersuiciderat
最新回复
(
0
)