首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,且 求A的所有特征值与特征向量;
设3阶实对称矩阵A的秩为2,且 求A的所有特征值与特征向量;
admin
2016-01-11
85
问题
设3阶实对称矩阵A的秩为2,且
求A的所有特征值与特征向量;
选项
答案
由题设知[*]所以,由特征值与特征向量的定义,λ
1
=1是A的一个特征值,对应的一个特征向量为α
1
=(1,0,1)
T
.λ
2
=一1是A的又一个特征值,对应的一个特征向量为α
2
=(1,0,一1)
T
,又r(A)=2,所以A的另一特征值λ
3
=0,设λ
3
对应的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,由题设知,α
1
T
α
3
=0,α
2
T
α
3
=0,即[*]解得基础解系为α
3
=(0,1,0)
T
. 故A的特征值为λ=1,λ=一1,λ=0.依次对应的特征向量为k
1
(1,0,1)
T
,k
2
(1,0,一1)
T
,k
3
(0,1,0)
T
,其中k
1
,k
2
,k
3
均是不为0的任意常数.
解析
本题考查抽象实对称对角化的逆问题.所涉及的知识点是矩阵A不可逆
是A的特征值;实对称矩阵的不同特征值所对应的特征向量必正交.
转载请注明原文地址:https://www.kaotiyun.com/show/9e34777K
0
考研数学二
相关试题推荐
设f(x,y)=x+Y+1在D={(x,y)|x2+y2≤a2,a>0}上取得最大值+1,求a的值.
(Ⅰ)证明:方程x=1+2lnx在(e,+∞)内有唯一实根ξ;(Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2lnxn-1(n=1,2,…),证明:xn=ξ.
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.设Z1,Z2,…,Zn为总体Z的简单随机样本,求σ的最大似然估计量.
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
设随机变量X与Y相互独立,X服从参数为λ(λ>0)的指数分布,Y的概率分布为P{Y=-1)=1/3,P{Y=1}=2/3,记Z=XY·若Z1,Z2,…,Zn为总体Z的简单随机样本,求λ的矩估计量
设积分区域D={(x,y)|x2+y2≥x,|x|≤1,|y|≤1),则|xy|dxdy=().
设生产某种产品必须投入两种要素x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为ro的雪堆在开始融化的3个小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
随机试题
什么是友谊?应当如何获得和发展友谊?
A、 B、 C、 D、 B
膀胱高度膨胀又极度虚弱的患者导尿后第一次放尿不应超过
运用补母泻子法,下列五输穴搭配错误的是
法是由国家强制力保证实施的行为规范的总称,决定其内容的是( )。
关于新增固定资产价值的确定,下列说法中正确的有()。【2016年真题】
下列各项属于当期支付的是( )。Ⅰ.基本工资、奖金、津贴Ⅱ.年红利Ⅲ.年薪Ⅳ.当期可以兑现的福利Ⅴ.股票期权
下列几个句子的顺序已经被打乱,请重新排列,排列正确的一项是()。①大海里,闪烁着一片鱼鳞似的银波②一片片坐着、卧着、走着的人影,看得清清楚楚了③沙滩上,也突然明亮起来④它像一面光辉四射的银盘似的,从那平静的大海里
设总体X的概率密度为其中0<θ<1是未知参数,c是常数.X1,X2,…,Xn为来自总体X的简单随机样本,则c=_______;θ的矩估计量=_______.
Lookattheadvertisementbelow.Itshowsservicesofferedbyabusinessconsultancy.Forquestions6-10,decidewhich(A-H)wou
最新回复
(
0
)