首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
admin
2018-04-12
112
问题
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Ax=0的通解。
选项
答案
由AB=O知,B的每一列均为Ax=0的解,且r(A)+r(B)≤3。 若k≠9,则r(B)=2,于是r(A)≤1,又显然r(A)≥1,故r(A)=1。此时Ax=0的基础解系所含解向量的个数为3一r(A)=2,矩阵B的第一、第三列线性无关,可作为基础解系,故Ax=0的通解为: x=[*],k
1
,k
2
为任意常数。 若k=9,则r(B)=1,从而1≤r(A)≤2。 当r(A)=2时,则Ax=0的通解为x=[*],k
1
为任意常数。 当r(A)=1时,则Ax=0的同解方程组为ax
1
+bx
2
+cx
3
=0,不妨设a≠0,则其通解为 x=[*],k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8Dk4777K
0
考研数学二
相关试题推荐
函数的无穷间断点的个数为
设A为n阶可逆矩阵,则下列结论正确的是().
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
(I)利用行列式性质,有[*]
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
随机试题
简述社会主义核心价值观的基本内容。
教师个体专业化发展最直接、最普遍的途径是()
A、thoughB、caughtC、throughD、toughD
企业投资项目可行性研究在()的基础上进行归纳总结,提出推荐方案以及项目是否可行的评价结论。
锅炉水位应经常保持在正常水位线处,并允许在正常水位线上下()mm之内波动。
根据《招标投标法实施条例》(国务院令613号),投标有效期从()起计算。
下列科目中,属于成本类科目的有()。
作为意识形态,文学的特殊属性在于它是_____意识形态。
现在是元月份,现行利率为5%,7月份基金期货价格为346.30美元,而12月份期货价格为360.00美元。是否存在套利机会?如果存在,你怎样操作?
Appliedresearchaimsatsomespecificobjective,suchasthedevelopmentofanewproduce,process,ormaterial.
最新回复
(
0
)