首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0, 证明:(1)在开区间(a,b)内g(x)≠0; (2)在开区间(a,b)内至少存在一点ε,使得
admin
2017-11-13
85
问题
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,
证明:(1)在开区间(a,b)内g(x)≠0;
(2)在开区间(a,b)内至少存在一点ε,使得
选项
答案
证明 (1)(反证法)假设存在点c∈(a,b),使g(c)=0,则f(x),g(x)分别在区间[a,c],[c,b]上用罗尔定理,得jε
1
∈(a,c),ε
2
∈(c,b),使得gˊ(ε
1
)=gˊ(ε
2
)=0,进而再在区间[ε
1
,ε
2
]上对gˊ(x)再用罗尔定理知了ε
3
∈(ε
1
,ε
2
),使得g〞(ε
3
)=0;但这与题设g〞(x)≠0矛盾 所以在开区间(a,b)内g(x)≠0 (2)在开区间(a,b)内至少存在一点ε,使得[*] 设F(x)=f(x)gˊ(x)-fˊ(x)g(x),易知 F(a)=f(a)gˊ(a)-fˊ(a)g(a)=0, F(b)=f(b)gˊ(b)-fˊ(b)g(b)=0,在[a,b]上对F(x)用罗尔定理, 必存在ε∈(a,b),使fˊ(ε)=0 Fˊ(ε)=Fˊ(x)|
x=ε
=[fˊ(x)gˊ(x)+f(x)g〞(x)-f〞(x)g(x)-fˊ(x)gˊ(x)]|
x=ε
=[f(x)g〞(x)-f〞(x)g(x)]|
x=ε
=f(ε)g〞(ε)-f〞(ε)g(ε)=0 又因为g(ε)≠0,g〞(ε)≠0 所以[*] ε∈(a,b)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7Nr4777K
0
考研数学一
相关试题推荐
[*]
求幂级数的和函数S(x)及其极值.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________。
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
设函数,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数绝对收敛.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
求f(x)=的间断点并判断其类型.
随机试题
除去水提取液中的碱性成分和无机离子常用
A.肝胃郁热B.脾胃虚寒C.胃气上逆D.脾阳不振E.脾失健运
关于右心室梗死,错误的是
患者,女,37岁。主诉:左上后牙颊侧牙龈长一肿物6个月,并慢慢增大,影响进食。否认妊娠。临床检查见颊侧牙龈一肿物,1cm×2cm大小,有蒂。x线片显示牙周膜间隙增宽。最有可能的诊断是
王检察官的下列哪一行为符合检察官职业道德的要求?
反腐要防微杜渐,做到“零容忍”,这体现了质量与数量互相转变的规律和哲学原理。()
某饼店一种成本为1.4元的点心卖2元一份,每天没卖完的点心会在晚上8点后半价促销,全部卖完。已知一个月30天中,平均有15天每天晚上8点前可卖出100份点心,而其余15天每天晚上8点前只能卖出60份。如果饼店每天做的点心数量相同,一个月能够获得的最大利润是
简述金融市场的含义及其功能。[华中科技大学2013研;辽宁大学2015研]
Togetintothehabitofsmokingmeans______one’sownlifeshort.
Whatpositionisadvertised?Wherewillresumesbesentto?
最新回复
(
0
)