首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/1-ξ.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/1-ξ.
admin
2018-05-21
54
问题
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=2f’(ξ)/1-ξ.
选项
答案
令φ(x)=(x-1)
2
f’(x),显然φ(x)在[0,1]上可导.由f(0)=f(1)=0,根据罗尔定理,存在c∈(0,1),使得f’(c)=0,再由φ(c)=φ(1)=0,根据罗尔定理,存在ξ∈(c,1)[*](0,1),使得φ’(ξ)=0,而φ’(x)=2(x-1)f’(x)+(x-1)
2
f"(x),所以2(ξ-1)f’(ξ)+(ξ-1)
2
f"(ξ)=0,整理得f"(ξ)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5zg4777K
0
考研数学一
相关试题推荐
(Ⅰ)设X1,X2,…,Xn是来自概率密度为的总体的样本,θ未知,求的最大似然估计值;(Ⅱ)设X1,X2,…,Xn是来自正态总体N(μ,1)的样本,μ未知,求θ=P{X>2)的最大似然估计值.
设f(x),g(x)具有二阶连续导数,且[y2f(x)+2yex+2yg(x)]dx+2[yg(x)+f(x)]dy=0,其中L为平面上任意简单闭曲线.(Ⅰ)求f(x)和g(x),其中f(0)=g(0)=0;(Ⅱ)计算沿任一条曲线从点(0,0)到点(
若当x→0时,x一(a+bcosx)sinx为x3的高阶无穷小,其中a,b为常数,则(a,b)=________.
设总体X的密度函数为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设总体X的概率密度为其中θ>0,θ,μ为未知参数,X1,X2,…,Xn为取自X的简单随机样本.试求θ,μ的最大似然估计量.
设n元(n>3)线性方程组Ax=b,其中试问a满足什么条件时,该方程组有解、无解?有唯一解时求出x1;有无穷多解时,求其通解.
当x=-2时,级数条件收敛,则级数的收敛半径为()
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,若f(x,y)在D内没有零点,则f(x,y)在D上()
计算,其中∑为球面x2+y2+z2=1的外侧位于x≥0,y≥0的部分.
设且A~B.求可逆矩阵P,使得P-1AP=B.
随机试题
幼儿抱着一只玩具鸭子,只是静静地坐着,当老师说:“鸭子要游水了。”幼儿的想象才活跃起来。这说明()
某县财政局张某被给予记大过处分,其只能向( )提出申诉。
甲、乙双方当事人签订货物买卖合同,并在合同中约定了仲裁条款:凡因本合同所发生之一切纠纷,均提交某市仲裁委员会仲裁。后因市场情况发生变化,双方经协商将合同终止,但关于合同的部分履行及相应价款问题仍有争议存在。甲方据该仲裁协议向仲裁委员会申请仲裁,乙方则向仲裁
个人理财业务是经()批准的一项银行中间业务。
商业银行经营管理的最基本原则是()。
我国的货币市场主要包括()。
根据我国现行规定,商业银行可以贴现的票据是()。
A证券的预期报酬率为12%,标准差为15%;B证券的预期报酬率为18%,标准差为20%。投资于两种证券组合的机会集是一条直线,由A、B证券构成的投资组合()。
2018年1月1日A公司支付价款2250万元取得一项股权投资,另支付交易费用10万元,A公司根据管理该项金融资产的业务模式,将其指定为以公允价值计量且其变动计入其他综合收益的金融资产。2018年12月31日,该项股权投资的公允价值为3100万元。2019年
______yourhomeworkandmakesurethatyoudon’t______anymistakes.
最新回复
(
0
)