首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2017-04-19
61
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|),则存在正交变换x=Py,使x
T
Ax=[*],且y
T
y=x
T
x,故|x
T
Ax|=[*]=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3fu4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
证明:(1)周长一定的矩形中,正方形的面积最大;(2)面积一定的矩形中,正方形的周长最小。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
随机试题
A.两经或三经证候同时出现B.一经证候已罢,继而出现另一经证候C.互为表里的阴阳两经证候同时出现D.一经证候未罢,又出现另一经证候“合病”是指
哪项不是确定药物剂量的依据
作为制订吊装技术方案重要依据的起重机基本参数主要有()。
债权是企业收取款项的权利,一般包括()等。
关于个人所得税的特殊计税方法,正确的有()。
阅读下列材料,回答问题。某幼儿园的钟老师,用自己班上10个幼儿的姓名,报名参加了某报刊举办的抽奖活动。结果幼儿星星被幸运抽中。因为领取奖品需凭幼儿的户口本。钟老师就把这件事告诉了星星的妈妈,并向她借户口本。可星星的妈妈却认为钟老师侵犯了星星的姓名
人民检察院审查批准逮捕犯罪嫌疑人由检察委员会讨论决定。()
支持多道程序的操作系统,区别于其他操作系统的主要特征为()。
二进制数11000000对应的十进制数是
TheImpossibilityofRapidEnergyTransitions[A]Politiciansarefondofpromisingrapidenergytransitions.Whetheritisatra
最新回复
(
0
)