首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求(y3-3x2y-3x2y)dx+(3xy2-3x2y-x3+y2)dy=0的通解.
求(y3-3x2y-3x2y)dx+(3xy2-3x2y-x3+y2)dy=0的通解.
admin
2018-09-25
80
问题
求(y
3
-3x
2
y-3x
2
y)dx+(3xy
2
-3x
2
y-x
3
+y
2
)dy=0的通解.
选项
答案
可以验知,这是全微分方程.按解全微分方程办法解之. 记P(x,y)=y
3
-3xy
2
-3x
2
y,Q(x,y)=3xy
2
-3x
2
y-x
3
+y
2
,有 [*] 故知这是全微分方程. 分项组合观察法.将原方程通过观察分项组合 (y
3
-3xy
2
-3x
2
y)dx+(3xy
2
-3x
2
y-x
3
+y
2
)dy =(y
3
dx+3xy
2
dy)-3xy(ydx+xdy)-(3x
2
ydx+x
3
dy)+y
2
dy =0. 即 [*] 所以通解为 [*] 其中C为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/20g4777K
0
考研数学一
相关试题推荐
将函数f(x)=x一1(0≤x≤2)展开成周期为4的余弦级数.
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
设二维连续型随机变量(X,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布.(Ⅰ)问X与Y是否相互独立;(Ⅱ)求X与Y的相关系数.
设二维随机变量(X,Y)的联合密度函数为试求:(Ⅰ)数学期望EX,EY;(Ⅱ)方差DX,DY;(Ⅲ)协方差Cov(X,Y),D(5X一3Y).
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
已知(x-1))y″-xy′+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y″-xy′+y=(x-1)2的解,则此方程的通解是y=___________.
求微分方程xy″-y′=x2的通解.
求下列各微分方程的通解:(Ⅰ)y′=;(Ⅱ)y′=2;(Ⅲ)y′=
随机试题
甲、乙、丙组成了特殊普通合伙企业,丙在执行合伙业务中因重大过失造成合伙企业100万元债务,对该债务的承担,下列表述正确的是()
不属于临床血液学研究内容的是
舌癌最少发生于
一中年男性患者因急性阑尾炎住院治疗,手术后,主管医生为了使患者尽快恢复,给患者使用了一种比较贵的新型抗生素。但并没有同患者商量。患者发现自己需付上千元的药费,认为医生没有告诉自己而擅自做主,自己不应该负担这笔钱。在这个案例中,医生损害了患者的哪项权利
风险限额管理原则包括()。
北方某地区为了应对干旱,居民用水量已经受到严重的限制。不过,目前水库蓄水量与5年前该地区干旱期间的蓄水量持平。既然当时居民用水量并未受到限制,所以现在也不应该受到限制。下列哪一陈述为真,将最严重地削弱作者的主张?()
秦国能消灭六国,统一天下的根本原因是()。
Computersarenowbeingpushedintoschools.Weknowthatmultimediawillmake【21】______easyandfun.Childrenwillhappily
Lookatthechartsbelow.Theyshowthesalesofcookersforfouryearsfrom1994to1997.Whichchartdoessentence11-15d
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
最新回复
(
0
)