首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)= (Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型; (Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
设f(x)= (Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型; (Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
admin
2020-02-28
78
问题
设f(x)=
(Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型;
(Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
选项
答案
(Ⅰ)当x≠0,x≠1时,显然f(x)连续。在x=0处,由 [*] 故f(x)在点x=0处不连续,且点x=0是f(x)的第一类间断点。 在x=1处,由 [*] 得f(1+0)=f(1-0)=1+∫
0
1
e
﹣t
2
dt,故f(x)在点x=1处既左连续又右连续,于是f(x)在点x=1处连续。 因此f(x)在(﹣∞,0)∪(0,﹢∞)上连续,点x=0是f(x)的第一类间断点。 (Ⅱ)在第(Ⅰ)问中已求得f(x)在(﹣∞,0)∪(0,﹢∞)上连续,且[*]f(x)存在,要断f(x)在(﹣∞,1]上的有界性,只需考查[*]f(x)是否存在,即 [*], 因为f(x)在(﹣∞,0]上连续,且[*]f(x)存在,则f(x)在(﹣∞,0]上有界。f(x)在(0,1]上连续,且[*]f(x)存在,则f(x)在(0,1]上有界。综上f(x)在(﹣∞,1]上有界。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0DA4777K
0
考研数学二
相关试题推荐
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
求函数f(χ)=在区间[e,e2]上的最大值.
设f(χ)连续,∫0χtf(χ-t)dt=1-cosχ,求f(χ)dχ.
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设A=①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
(1999年)设f(χ)是连续函数,F(χ)是,(χ)的原函数,则【】
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
求函数f(x,y)=x2+y2一12x+16y在区域D={(x,y)|x2+y2≤25}上的最大值和最小值.
随机试题
冈崎片段是
男性,56岁的心房颤动患者,突然发生失语。2周来共发生过5次,每次持续2~15秒。查体无神经系统异常。脑CT无异常。主要累及的血管是
下列细胞因子中,与慢性阻塞肺疾病慢性气道炎症发病关系最密切的是
自营性房地产贷款是指银行以本外币存款作为主要信贷资金来源自主发放的用于房地产开发、经营、流通和消费领域的贷款。主要有()。
目前,我国民间组织设立、规范与管理的政策法规主要包括( )。
【2014辽宁鞍山】学生放学回家后既想看电视又想做作业的心态体现的是()。
群体发展的最高阶段是()
A、 B、 C、 D、 B
一家商场按下述方式促销商品:一年中任何时候,或者有季节性促销,或者有节日促销,或两者兼而有之。每一种促销都会持续一个月。在任何一个月,如果商场想要把某一类商品清仓,就宣布季节性促销;如果某个月份有节日并且仓库中仍有剩余商品,就宣布节日促销。不过,11月没有
WhogatheredinaRomesquareSaturdayfortheFamilyDayrally?
最新回复
(
0
)