首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
admin
2016-10-13
93
问题
设向量组(I)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
因为向量组(I)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示. 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
一α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
一α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/06u4777K
0
考研数学一
相关试题推荐
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
用集合运算律证明:
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
随机试题
双性化教育
患者,男,17岁。近半月出现尿少、全身水肿。尿蛋白定量8g/d。血浆白蛋白18g/L。尿沉渣镜检红细胞4~5/HP,有透明管型,偶见颗粒管型。血色素正常。血肌酐正常,血尿素氮10.5mmol/L。最可能的诊断为
在长期的医疗活动中形成发展属反映社会对医学的需求属
如图7-70所示电路,Q1、Q0的原始状态为11,当输入两个脉冲后的新状态为()。
风险评价的具体表现为( )。
下列施工人员意外伤害保险期限的说法,正确的是()。
[2016年·吉林·简答]简述影响遗忘进程的因素。
数据库管理系统提供了数据定义语言(DDL),用于定义各种数据库对象。数据定义语句经DDL编译器编译后,各种对象的描述信息存放在数据库的【1】中。
有以下程序:#include<stdio.h>main(){inti=0,a=0;while(i<20){for(;;){if((i%5)==0)break;elsei-
AliceisMr.Liu’s______.AlicewantsProf.Kingtogivehim______.
最新回复
(
0
)