首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
admin
2014-07-22
86
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且
,证明(1)中的x
0
是唯一的.
选项
答案
(1)令ψ(x)=-x∫
x
1
f(t)dt.则ψ(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且ψ(0)=ψ(1)=0.由罗尔定理知,存在x∫
0
∈(0,1),使ψ’(x∫
0
)=0,即 ψ’(x∫
0
)=x∫
0
f(x(0)-∫
x
0
1
f(t)dt=0, 也即x
0
f(x
0
)=∫
x
0
1
f(x)dx. (2)令F(x)=xf(x)-∫
x
1
(t)dt,则 F’(x)=xf’(x)+f(z)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内严格单调增加,从而F(x)=0的点x=x
0
必唯一,故(1)中的x
0
是唯一的.
解析
[分析](1)要证的结论相当于存在x
0
∈(0,1),使x
0
f(x
0
)=∫x
0
0
f(x)dx,可考虑对辅助函数ψ(x)=xf(x)-∫x
0
0
f(x)dt在闭区间[0,1]上用连续函数的介值定理,但ψ(0)ψ(1)<0是否成立?仅由f(x)是非负连续函数无法推证,可改用微分中值定理,ψ(x)是某函数导数的结果,这只需令 ψ’(x)=xf(x)-∫
x
1
(t)dt,
然后积分得ψ(x)=∫
x
1
f(t)dt,再对其应用罗尔定理即可.
(2)唯一性一般用单调性证明,而这只需证明ψ’(x)定号即可.
[评注] 本题表面上用连续函数的介值定理,而实际上要用微分叶中值定理,其关键又存于构造合适的辅助函数.本题先令
ψ(x)=xf(x)-∫
x
1
f(t)df,
用介值定理无法证明,再改令
ψ(x)=xf(x)-∫
x
1
f(t)dt,
然后通过不定积分,得到所需辅助函数ψ(x)=-x∫
x
1
f(t)dt,这种处理技巧值得注意.
转载请注明原文地址:https://www.kaotiyun.com/show/7R34777K
0
考研数学二
相关试题推荐
微分方程2y"-6y′+5y=0的通解为____________.
2
已知曲线的参数方程为则曲线在的法线方程是_________.
求解不定积分
设y0=2e-x+xe-2x为三阶常系数齐次线性微分方程y"’+py"+qy’+ry=0的一个特解,且f(x)是该方程满足初始条件f(0)=-2,f’(0)=7,f"(0)=-18的特解,则∫0+∞f(x)dx=________。
设3阶实对阵矩阵A满足A2—3A+2E=O,且|A|=2,则二次型的标准形为__________.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
设f(x)在[0,1]上二阶可导,f(0)=0,f’(x)>0,f"(x)>0,则对于,其大小顺序排列正确的是()。
设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于()
随机试题
A.骨架型缓释、控释制剂B.注射用缓释制剂C.缓释膜剂D.渗透泵式控释制剂E.胃滞留型缓释、控释制剂利用渗透压原理制成的控释制剂,能恒速释放药物的是()。
极易发生心力衰竭的心肌梗死面积需达
常用的数理统计方法()。
根据企业所得税法律制度的规定,在中国境内未设立机构、场所的非居民企业从中国境内取得的下列所得中,应按收入全额为应纳税所得额计算征收企业所得税的有()。
某企业面临甲、乙两个投资项目。经衡量,它们的预期报酬率相等,甲项目的标准差小于乙项目的标准差。对甲、乙项目可以做出的判断为( )。
郝斯汀挛缩是一种一只手或两只手的连接组织失调的疾病,这通常会导致患者丧失行动能力。一项对几千份医疗保障索赔的调查表明,一只手进行过郝斯汀挛缩手术的人中有30%在三年内会对该种失调进行第二次手术。因此,显而易见,对郝斯汀挛缩进行一次性手术治疗通常对于长期矫正
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:
关于Ethernet物理地址的描述中,正确的是()。
In1944,officialsfromforty-fivenationsassembledforahistoricmeetingatBrettonWoodsintheUnitedStates.Eventhough
•Readthearticlebelowaboutselectingbrandnames.•Inmostofthelines41-52thereisoneextraword.Itiseithergrammat
最新回复
(
0
)